| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nzprmdif.m |
⊢ ( 𝜑 → 𝑀 ∈ ℙ ) |
| 2 |
|
nzprmdif.n |
⊢ ( 𝜑 → 𝑁 ∈ ℙ ) |
| 3 |
|
nzprmdif.ne |
⊢ ( 𝜑 → 𝑀 ≠ 𝑁 ) |
| 4 |
|
difin |
⊢ ( ( ∥ “ { 𝑀 } ) ∖ ( ( ∥ “ { 𝑀 } ) ∩ ( ∥ “ { 𝑁 } ) ) ) = ( ( ∥ “ { 𝑀 } ) ∖ ( ∥ “ { 𝑁 } ) ) |
| 5 |
|
prmz |
⊢ ( 𝑀 ∈ ℙ → 𝑀 ∈ ℤ ) |
| 6 |
1 5
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 7 |
|
prmz |
⊢ ( 𝑁 ∈ ℙ → 𝑁 ∈ ℤ ) |
| 8 |
2 7
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 9 |
6 8
|
nzin |
⊢ ( 𝜑 → ( ( ∥ “ { 𝑀 } ) ∩ ( ∥ “ { 𝑁 } ) ) = ( ∥ “ { ( 𝑀 lcm 𝑁 ) } ) ) |
| 10 |
9
|
difeq2d |
⊢ ( 𝜑 → ( ( ∥ “ { 𝑀 } ) ∖ ( ( ∥ “ { 𝑀 } ) ∩ ( ∥ “ { 𝑁 } ) ) ) = ( ( ∥ “ { 𝑀 } ) ∖ ( ∥ “ { ( 𝑀 lcm 𝑁 ) } ) ) ) |
| 11 |
4 10
|
eqtr3id |
⊢ ( 𝜑 → ( ( ∥ “ { 𝑀 } ) ∖ ( ∥ “ { 𝑁 } ) ) = ( ( ∥ “ { 𝑀 } ) ∖ ( ∥ “ { ( 𝑀 lcm 𝑁 ) } ) ) ) |
| 12 |
|
lcmgcd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 lcm 𝑁 ) · ( 𝑀 gcd 𝑁 ) ) = ( abs ‘ ( 𝑀 · 𝑁 ) ) ) |
| 13 |
6 8 12
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑀 lcm 𝑁 ) · ( 𝑀 gcd 𝑁 ) ) = ( abs ‘ ( 𝑀 · 𝑁 ) ) ) |
| 14 |
|
prmrp |
⊢ ( ( 𝑀 ∈ ℙ ∧ 𝑁 ∈ ℙ ) → ( ( 𝑀 gcd 𝑁 ) = 1 ↔ 𝑀 ≠ 𝑁 ) ) |
| 15 |
1 2 14
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑀 gcd 𝑁 ) = 1 ↔ 𝑀 ≠ 𝑁 ) ) |
| 16 |
3 15
|
mpbird |
⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) = 1 ) |
| 17 |
16
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑀 lcm 𝑁 ) · ( 𝑀 gcd 𝑁 ) ) = ( ( 𝑀 lcm 𝑁 ) · 1 ) ) |
| 18 |
|
lcmcl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) ∈ ℕ0 ) |
| 19 |
6 8 18
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 lcm 𝑁 ) ∈ ℕ0 ) |
| 20 |
19
|
nn0cnd |
⊢ ( 𝜑 → ( 𝑀 lcm 𝑁 ) ∈ ℂ ) |
| 21 |
20
|
mulridd |
⊢ ( 𝜑 → ( ( 𝑀 lcm 𝑁 ) · 1 ) = ( 𝑀 lcm 𝑁 ) ) |
| 22 |
17 21
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑀 lcm 𝑁 ) · ( 𝑀 gcd 𝑁 ) ) = ( 𝑀 lcm 𝑁 ) ) |
| 23 |
6
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 24 |
8
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 25 |
23 24
|
remulcld |
⊢ ( 𝜑 → ( 𝑀 · 𝑁 ) ∈ ℝ ) |
| 26 |
|
prmnn |
⊢ ( 𝑀 ∈ ℙ → 𝑀 ∈ ℕ ) |
| 27 |
1 26
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 28 |
27
|
nnnn0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 29 |
28
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ 𝑀 ) |
| 30 |
|
prmnn |
⊢ ( 𝑁 ∈ ℙ → 𝑁 ∈ ℕ ) |
| 31 |
2 30
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 32 |
31
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 33 |
32
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ 𝑁 ) |
| 34 |
23 24 29 33
|
mulge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝑀 · 𝑁 ) ) |
| 35 |
25 34
|
absidd |
⊢ ( 𝜑 → ( abs ‘ ( 𝑀 · 𝑁 ) ) = ( 𝑀 · 𝑁 ) ) |
| 36 |
13 22 35
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑀 lcm 𝑁 ) = ( 𝑀 · 𝑁 ) ) |
| 37 |
36
|
sneqd |
⊢ ( 𝜑 → { ( 𝑀 lcm 𝑁 ) } = { ( 𝑀 · 𝑁 ) } ) |
| 38 |
37
|
imaeq2d |
⊢ ( 𝜑 → ( ∥ “ { ( 𝑀 lcm 𝑁 ) } ) = ( ∥ “ { ( 𝑀 · 𝑁 ) } ) ) |
| 39 |
38
|
difeq2d |
⊢ ( 𝜑 → ( ( ∥ “ { 𝑀 } ) ∖ ( ∥ “ { ( 𝑀 lcm 𝑁 ) } ) ) = ( ( ∥ “ { 𝑀 } ) ∖ ( ∥ “ { ( 𝑀 · 𝑁 ) } ) ) ) |
| 40 |
11 39
|
eqtrd |
⊢ ( 𝜑 → ( ( ∥ “ { 𝑀 } ) ∖ ( ∥ “ { 𝑁 } ) ) = ( ( ∥ “ { 𝑀 } ) ∖ ( ∥ “ { ( 𝑀 · 𝑁 ) } ) ) ) |