Description: One and zero are different in a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isnzr.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
isnzr.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
Assertion | nzrnz | ⊢ ( 𝑅 ∈ NzRing → 1 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnzr.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
2 | isnzr.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
3 | 1 2 | isnzr | ⊢ ( 𝑅 ∈ NzRing ↔ ( 𝑅 ∈ Ring ∧ 1 ≠ 0 ) ) |
4 | 3 | simprbi | ⊢ ( 𝑅 ∈ NzRing → 1 ≠ 0 ) |