Metamath Proof Explorer


Theorem nzrnz

Description: One and zero are different in a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Hypotheses isnzr.o 1 = ( 1r𝑅 )
isnzr.z 0 = ( 0g𝑅 )
Assertion nzrnz ( 𝑅 ∈ NzRing → 10 )

Proof

Step Hyp Ref Expression
1 isnzr.o 1 = ( 1r𝑅 )
2 isnzr.z 0 = ( 0g𝑅 )
3 1 2 isnzr ( 𝑅 ∈ NzRing ↔ ( 𝑅 ∈ Ring ∧ 10 ) )
4 3 simprbi ( 𝑅 ∈ NzRing → 10 )