Step |
Hyp |
Ref |
Expression |
1 |
|
nzrpropd.1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
2 |
|
nzrpropd.2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
3 |
|
nzrpropd.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
4 |
|
nzrpropd.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) |
5 |
1 2 3 4
|
ringpropd |
⊢ ( 𝜑 → ( 𝐾 ∈ Ring ↔ 𝐿 ∈ Ring ) ) |
6 |
1 2 4
|
rngidpropd |
⊢ ( 𝜑 → ( 1r ‘ 𝐾 ) = ( 1r ‘ 𝐿 ) ) |
7 |
1 2 3
|
grpidpropd |
⊢ ( 𝜑 → ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐿 ) ) |
8 |
6 7
|
neeq12d |
⊢ ( 𝜑 → ( ( 1r ‘ 𝐾 ) ≠ ( 0g ‘ 𝐾 ) ↔ ( 1r ‘ 𝐿 ) ≠ ( 0g ‘ 𝐿 ) ) ) |
9 |
5 8
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝐾 ∈ Ring ∧ ( 1r ‘ 𝐾 ) ≠ ( 0g ‘ 𝐾 ) ) ↔ ( 𝐿 ∈ Ring ∧ ( 1r ‘ 𝐿 ) ≠ ( 0g ‘ 𝐿 ) ) ) ) |
10 |
|
eqid |
⊢ ( 1r ‘ 𝐾 ) = ( 1r ‘ 𝐾 ) |
11 |
|
eqid |
⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) |
12 |
10 11
|
isnzr |
⊢ ( 𝐾 ∈ NzRing ↔ ( 𝐾 ∈ Ring ∧ ( 1r ‘ 𝐾 ) ≠ ( 0g ‘ 𝐾 ) ) ) |
13 |
|
eqid |
⊢ ( 1r ‘ 𝐿 ) = ( 1r ‘ 𝐿 ) |
14 |
|
eqid |
⊢ ( 0g ‘ 𝐿 ) = ( 0g ‘ 𝐿 ) |
15 |
13 14
|
isnzr |
⊢ ( 𝐿 ∈ NzRing ↔ ( 𝐿 ∈ Ring ∧ ( 1r ‘ 𝐿 ) ≠ ( 0g ‘ 𝐿 ) ) ) |
16 |
9 12 15
|
3bitr4g |
⊢ ( 𝜑 → ( 𝐾 ∈ NzRing ↔ 𝐿 ∈ NzRing ) ) |