| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nzrpropd.1 | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐾 ) ) | 
						
							| 2 |  | nzrpropd.2 | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐿 ) ) | 
						
							| 3 |  | nzrpropd.3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | 
						
							| 4 |  | nzrpropd.4 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) | 
						
							| 5 | 1 2 3 4 | ringpropd | ⊢ ( 𝜑  →  ( 𝐾  ∈  Ring  ↔  𝐿  ∈  Ring ) ) | 
						
							| 6 | 1 2 4 | rngidpropd | ⊢ ( 𝜑  →  ( 1r ‘ 𝐾 )  =  ( 1r ‘ 𝐿 ) ) | 
						
							| 7 | 1 2 3 | grpidpropd | ⊢ ( 𝜑  →  ( 0g ‘ 𝐾 )  =  ( 0g ‘ 𝐿 ) ) | 
						
							| 8 | 6 7 | neeq12d | ⊢ ( 𝜑  →  ( ( 1r ‘ 𝐾 )  ≠  ( 0g ‘ 𝐾 )  ↔  ( 1r ‘ 𝐿 )  ≠  ( 0g ‘ 𝐿 ) ) ) | 
						
							| 9 | 5 8 | anbi12d | ⊢ ( 𝜑  →  ( ( 𝐾  ∈  Ring  ∧  ( 1r ‘ 𝐾 )  ≠  ( 0g ‘ 𝐾 ) )  ↔  ( 𝐿  ∈  Ring  ∧  ( 1r ‘ 𝐿 )  ≠  ( 0g ‘ 𝐿 ) ) ) ) | 
						
							| 10 |  | eqid | ⊢ ( 1r ‘ 𝐾 )  =  ( 1r ‘ 𝐾 ) | 
						
							| 11 |  | eqid | ⊢ ( 0g ‘ 𝐾 )  =  ( 0g ‘ 𝐾 ) | 
						
							| 12 | 10 11 | isnzr | ⊢ ( 𝐾  ∈  NzRing  ↔  ( 𝐾  ∈  Ring  ∧  ( 1r ‘ 𝐾 )  ≠  ( 0g ‘ 𝐾 ) ) ) | 
						
							| 13 |  | eqid | ⊢ ( 1r ‘ 𝐿 )  =  ( 1r ‘ 𝐿 ) | 
						
							| 14 |  | eqid | ⊢ ( 0g ‘ 𝐿 )  =  ( 0g ‘ 𝐿 ) | 
						
							| 15 | 13 14 | isnzr | ⊢ ( 𝐿  ∈  NzRing  ↔  ( 𝐿  ∈  Ring  ∧  ( 1r ‘ 𝐿 )  ≠  ( 0g ‘ 𝐿 ) ) ) | 
						
							| 16 | 9 12 15 | 3bitr4g | ⊢ ( 𝜑  →  ( 𝐾  ∈  NzRing  ↔  𝐿  ∈  NzRing ) ) |