Metamath Proof Explorer


Theorem nzrpropd

Description: If two structures have the same components (properties), one is a nonzero ring iff the other one is. (Contributed by SN, 21-Jun-2025)

Ref Expression
Hypotheses nzrpropd.1 ( 𝜑𝐵 = ( Base ‘ 𝐾 ) )
nzrpropd.2 ( 𝜑𝐵 = ( Base ‘ 𝐿 ) )
nzrpropd.3 ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 𝑥 ( +g𝐿 ) 𝑦 ) )
nzrpropd.4 ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( .r𝐾 ) 𝑦 ) = ( 𝑥 ( .r𝐿 ) 𝑦 ) )
Assertion nzrpropd ( 𝜑 → ( 𝐾 ∈ NzRing ↔ 𝐿 ∈ NzRing ) )

Proof

Step Hyp Ref Expression
1 nzrpropd.1 ( 𝜑𝐵 = ( Base ‘ 𝐾 ) )
2 nzrpropd.2 ( 𝜑𝐵 = ( Base ‘ 𝐿 ) )
3 nzrpropd.3 ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 𝑥 ( +g𝐿 ) 𝑦 ) )
4 nzrpropd.4 ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( .r𝐾 ) 𝑦 ) = ( 𝑥 ( .r𝐿 ) 𝑦 ) )
5 1 2 3 4 ringpropd ( 𝜑 → ( 𝐾 ∈ Ring ↔ 𝐿 ∈ Ring ) )
6 1 2 4 rngidpropd ( 𝜑 → ( 1r𝐾 ) = ( 1r𝐿 ) )
7 1 2 3 grpidpropd ( 𝜑 → ( 0g𝐾 ) = ( 0g𝐿 ) )
8 6 7 neeq12d ( 𝜑 → ( ( 1r𝐾 ) ≠ ( 0g𝐾 ) ↔ ( 1r𝐿 ) ≠ ( 0g𝐿 ) ) )
9 5 8 anbi12d ( 𝜑 → ( ( 𝐾 ∈ Ring ∧ ( 1r𝐾 ) ≠ ( 0g𝐾 ) ) ↔ ( 𝐿 ∈ Ring ∧ ( 1r𝐿 ) ≠ ( 0g𝐿 ) ) ) )
10 eqid ( 1r𝐾 ) = ( 1r𝐾 )
11 eqid ( 0g𝐾 ) = ( 0g𝐾 )
12 10 11 isnzr ( 𝐾 ∈ NzRing ↔ ( 𝐾 ∈ Ring ∧ ( 1r𝐾 ) ≠ ( 0g𝐾 ) ) )
13 eqid ( 1r𝐿 ) = ( 1r𝐿 )
14 eqid ( 0g𝐿 ) = ( 0g𝐿 )
15 13 14 isnzr ( 𝐿 ∈ NzRing ↔ ( 𝐿 ∈ Ring ∧ ( 1r𝐿 ) ≠ ( 0g𝐿 ) ) )
16 9 12 15 3bitr4g ( 𝜑 → ( 𝐾 ∈ NzRing ↔ 𝐿 ∈ NzRing ) )