Description: A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015) (Proof shortened by SN, 23-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nzrring | ⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nzr | ⊢ NzRing = { 𝑟 ∈ Ring ∣ ( 1r ‘ 𝑟 ) ≠ ( 0g ‘ 𝑟 ) } | |
| 2 | 1 | ssrab3 | ⊢ NzRing ⊆ Ring |
| 3 | 2 | sseli | ⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |