Description: A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | nzrring | ⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
2 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
3 | 1 2 | isnzr | ⊢ ( 𝑅 ∈ NzRing ↔ ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
4 | 3 | simplbi | ⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |