Metamath Proof Explorer


Theorem nzrring

Description: A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Assertion nzrring ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring )

Proof

Step Hyp Ref Expression
1 eqid ( 1r𝑅 ) = ( 1r𝑅 )
2 eqid ( 0g𝑅 ) = ( 0g𝑅 )
3 1 2 isnzr ( 𝑅 ∈ NzRing ↔ ( 𝑅 ∈ Ring ∧ ( 1r𝑅 ) ≠ ( 0g𝑅 ) ) )
4 3 simplbi ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring )