Metamath Proof Explorer


Theorem nzrring

Description: A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015) (Proof shortened by SN, 23-Feb-2025)

Ref Expression
Assertion nzrring ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring )

Proof

Step Hyp Ref Expression
1 df-nzr NzRing = { 𝑟 ∈ Ring ∣ ( 1r𝑟 ) ≠ ( 0g𝑟 ) }
2 1 ssrab3 NzRing ⊆ Ring
3 2 sseli ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring )