Step |
Hyp |
Ref |
Expression |
1 |
|
nzrunit.1 |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
2 |
|
nzrunit.2 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
4 |
3 2
|
nzrnz |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ≠ 0 ) |
5 |
|
nzrring |
⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |
6 |
1 2 3
|
0unit |
⊢ ( 𝑅 ∈ Ring → ( 0 ∈ 𝑈 ↔ ( 1r ‘ 𝑅 ) = 0 ) ) |
7 |
6
|
necon3bbid |
⊢ ( 𝑅 ∈ Ring → ( ¬ 0 ∈ 𝑈 ↔ ( 1r ‘ 𝑅 ) ≠ 0 ) ) |
8 |
5 7
|
syl |
⊢ ( 𝑅 ∈ NzRing → ( ¬ 0 ∈ 𝑈 ↔ ( 1r ‘ 𝑅 ) ≠ 0 ) ) |
9 |
4 8
|
mpbird |
⊢ ( 𝑅 ∈ NzRing → ¬ 0 ∈ 𝑈 ) |
10 |
|
eleq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 ∈ 𝑈 ↔ 0 ∈ 𝑈 ) ) |
11 |
10
|
notbid |
⊢ ( 𝐴 = 0 → ( ¬ 𝐴 ∈ 𝑈 ↔ ¬ 0 ∈ 𝑈 ) ) |
12 |
9 11
|
syl5ibrcom |
⊢ ( 𝑅 ∈ NzRing → ( 𝐴 = 0 → ¬ 𝐴 ∈ 𝑈 ) ) |
13 |
12
|
necon2ad |
⊢ ( 𝑅 ∈ NzRing → ( 𝐴 ∈ 𝑈 → 𝐴 ≠ 0 ) ) |
14 |
13
|
imp |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈 ) → 𝐴 ≠ 0 ) |