| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nzss.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 2 |
|
nzss.n |
⊢ ( 𝜑 → 𝑁 ∈ 𝑉 ) |
| 3 |
|
iddvds |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∥ 𝑀 ) |
| 4 |
|
breq2 |
⊢ ( 𝑥 = 𝑀 → ( 𝑀 ∥ 𝑥 ↔ 𝑀 ∥ 𝑀 ) ) |
| 5 |
4
|
elabg |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ∈ { 𝑥 ∣ 𝑀 ∥ 𝑥 } ↔ 𝑀 ∥ 𝑀 ) ) |
| 6 |
3 5
|
mpbird |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ { 𝑥 ∣ 𝑀 ∥ 𝑥 } ) |
| 7 |
|
reldvds |
⊢ Rel ∥ |
| 8 |
|
relimasn |
⊢ ( Rel ∥ → ( ∥ “ { 𝑀 } ) = { 𝑥 ∣ 𝑀 ∥ 𝑥 } ) |
| 9 |
7 8
|
ax-mp |
⊢ ( ∥ “ { 𝑀 } ) = { 𝑥 ∣ 𝑀 ∥ 𝑥 } |
| 10 |
6 9
|
eleqtrrdi |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ∥ “ { 𝑀 } ) ) |
| 11 |
|
ssel |
⊢ ( ( ∥ “ { 𝑀 } ) ⊆ ( ∥ “ { 𝑁 } ) → ( 𝑀 ∈ ( ∥ “ { 𝑀 } ) → 𝑀 ∈ ( ∥ “ { 𝑁 } ) ) ) |
| 12 |
10 11
|
syl5 |
⊢ ( ( ∥ “ { 𝑀 } ) ⊆ ( ∥ “ { 𝑁 } ) → ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ∥ “ { 𝑁 } ) ) ) |
| 13 |
|
breq2 |
⊢ ( 𝑥 = 𝑀 → ( 𝑁 ∥ 𝑥 ↔ 𝑁 ∥ 𝑀 ) ) |
| 14 |
|
relimasn |
⊢ ( Rel ∥ → ( ∥ “ { 𝑁 } ) = { 𝑥 ∣ 𝑁 ∥ 𝑥 } ) |
| 15 |
7 14
|
ax-mp |
⊢ ( ∥ “ { 𝑁 } ) = { 𝑥 ∣ 𝑁 ∥ 𝑥 } |
| 16 |
13 15
|
elab2g |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ∈ ( ∥ “ { 𝑁 } ) ↔ 𝑁 ∥ 𝑀 ) ) |
| 17 |
12 16
|
mpbidi |
⊢ ( ( ∥ “ { 𝑀 } ) ⊆ ( ∥ “ { 𝑁 } ) → ( 𝑀 ∈ ℤ → 𝑁 ∥ 𝑀 ) ) |
| 18 |
17
|
com12 |
⊢ ( 𝑀 ∈ ℤ → ( ( ∥ “ { 𝑀 } ) ⊆ ( ∥ “ { 𝑁 } ) → 𝑁 ∥ 𝑀 ) ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ 𝑉 ) → ( ( ∥ “ { 𝑀 } ) ⊆ ( ∥ “ { 𝑁 } ) → 𝑁 ∥ 𝑀 ) ) |
| 20 |
|
ssid |
⊢ { 0 } ⊆ { 0 } |
| 21 |
|
simpl |
⊢ ( ( 𝑁 ∥ 𝑀 ∧ 𝑁 = 0 ) → 𝑁 ∥ 𝑀 ) |
| 22 |
|
breq1 |
⊢ ( 𝑁 = 0 → ( 𝑁 ∥ 𝑀 ↔ 0 ∥ 𝑀 ) ) |
| 23 |
|
dvdszrcl |
⊢ ( 𝑁 ∥ 𝑀 → ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) |
| 24 |
23
|
simprd |
⊢ ( 𝑁 ∥ 𝑀 → 𝑀 ∈ ℤ ) |
| 25 |
|
0dvds |
⊢ ( 𝑀 ∈ ℤ → ( 0 ∥ 𝑀 ↔ 𝑀 = 0 ) ) |
| 26 |
24 25
|
syl |
⊢ ( 𝑁 ∥ 𝑀 → ( 0 ∥ 𝑀 ↔ 𝑀 = 0 ) ) |
| 27 |
22 26
|
sylan9bbr |
⊢ ( ( 𝑁 ∥ 𝑀 ∧ 𝑁 = 0 ) → ( 𝑁 ∥ 𝑀 ↔ 𝑀 = 0 ) ) |
| 28 |
21 27
|
mpbid |
⊢ ( ( 𝑁 ∥ 𝑀 ∧ 𝑁 = 0 ) → 𝑀 = 0 ) |
| 29 |
28
|
breq1d |
⊢ ( ( 𝑁 ∥ 𝑀 ∧ 𝑁 = 0 ) → ( 𝑀 ∥ 𝑥 ↔ 0 ∥ 𝑥 ) ) |
| 30 |
|
0dvds |
⊢ ( 𝑥 ∈ ℤ → ( 0 ∥ 𝑥 ↔ 𝑥 = 0 ) ) |
| 31 |
29 30
|
sylan9bb |
⊢ ( ( ( 𝑁 ∥ 𝑀 ∧ 𝑁 = 0 ) ∧ 𝑥 ∈ ℤ ) → ( 𝑀 ∥ 𝑥 ↔ 𝑥 = 0 ) ) |
| 32 |
31
|
rabbidva |
⊢ ( ( 𝑁 ∥ 𝑀 ∧ 𝑁 = 0 ) → { 𝑥 ∈ ℤ ∣ 𝑀 ∥ 𝑥 } = { 𝑥 ∈ ℤ ∣ 𝑥 = 0 } ) |
| 33 |
|
0z |
⊢ 0 ∈ ℤ |
| 34 |
|
rabsn |
⊢ ( 0 ∈ ℤ → { 𝑥 ∈ ℤ ∣ 𝑥 = 0 } = { 0 } ) |
| 35 |
33 34
|
ax-mp |
⊢ { 𝑥 ∈ ℤ ∣ 𝑥 = 0 } = { 0 } |
| 36 |
32 35
|
eqtrdi |
⊢ ( ( 𝑁 ∥ 𝑀 ∧ 𝑁 = 0 ) → { 𝑥 ∈ ℤ ∣ 𝑀 ∥ 𝑥 } = { 0 } ) |
| 37 |
|
breq1 |
⊢ ( 𝑁 = 0 → ( 𝑁 ∥ 𝑥 ↔ 0 ∥ 𝑥 ) ) |
| 38 |
37
|
rabbidv |
⊢ ( 𝑁 = 0 → { 𝑥 ∈ ℤ ∣ 𝑁 ∥ 𝑥 } = { 𝑥 ∈ ℤ ∣ 0 ∥ 𝑥 } ) |
| 39 |
30
|
rabbiia |
⊢ { 𝑥 ∈ ℤ ∣ 0 ∥ 𝑥 } = { 𝑥 ∈ ℤ ∣ 𝑥 = 0 } |
| 40 |
39 35
|
eqtri |
⊢ { 𝑥 ∈ ℤ ∣ 0 ∥ 𝑥 } = { 0 } |
| 41 |
38 40
|
eqtrdi |
⊢ ( 𝑁 = 0 → { 𝑥 ∈ ℤ ∣ 𝑁 ∥ 𝑥 } = { 0 } ) |
| 42 |
41
|
adantl |
⊢ ( ( 𝑁 ∥ 𝑀 ∧ 𝑁 = 0 ) → { 𝑥 ∈ ℤ ∣ 𝑁 ∥ 𝑥 } = { 0 } ) |
| 43 |
36 42
|
sseq12d |
⊢ ( ( 𝑁 ∥ 𝑀 ∧ 𝑁 = 0 ) → ( { 𝑥 ∈ ℤ ∣ 𝑀 ∥ 𝑥 } ⊆ { 𝑥 ∈ ℤ ∣ 𝑁 ∥ 𝑥 } ↔ { 0 } ⊆ { 0 } ) ) |
| 44 |
20 43
|
mpbiri |
⊢ ( ( 𝑁 ∥ 𝑀 ∧ 𝑁 = 0 ) → { 𝑥 ∈ ℤ ∣ 𝑀 ∥ 𝑥 } ⊆ { 𝑥 ∈ ℤ ∣ 𝑁 ∥ 𝑥 } ) |
| 45 |
24
|
zcnd |
⊢ ( 𝑁 ∥ 𝑀 → 𝑀 ∈ ℂ ) |
| 46 |
45
|
ad2antrr |
⊢ ( ( ( 𝑁 ∥ 𝑀 ∧ 𝑁 ≠ 0 ) ∧ 𝑛 ∈ ℤ ) → 𝑀 ∈ ℂ ) |
| 47 |
23
|
simpld |
⊢ ( 𝑁 ∥ 𝑀 → 𝑁 ∈ ℤ ) |
| 48 |
47
|
zcnd |
⊢ ( 𝑁 ∥ 𝑀 → 𝑁 ∈ ℂ ) |
| 49 |
48
|
ad2antrr |
⊢ ( ( ( 𝑁 ∥ 𝑀 ∧ 𝑁 ≠ 0 ) ∧ 𝑛 ∈ ℤ ) → 𝑁 ∈ ℂ ) |
| 50 |
|
simplr |
⊢ ( ( ( 𝑁 ∥ 𝑀 ∧ 𝑁 ≠ 0 ) ∧ 𝑛 ∈ ℤ ) → 𝑁 ≠ 0 ) |
| 51 |
46 49 50
|
divcan2d |
⊢ ( ( ( 𝑁 ∥ 𝑀 ∧ 𝑁 ≠ 0 ) ∧ 𝑛 ∈ ℤ ) → ( 𝑁 · ( 𝑀 / 𝑁 ) ) = 𝑀 ) |
| 52 |
51
|
breq1d |
⊢ ( ( ( 𝑁 ∥ 𝑀 ∧ 𝑁 ≠ 0 ) ∧ 𝑛 ∈ ℤ ) → ( ( 𝑁 · ( 𝑀 / 𝑁 ) ) ∥ 𝑛 ↔ 𝑀 ∥ 𝑛 ) ) |
| 53 |
47
|
adantr |
⊢ ( ( 𝑁 ∥ 𝑀 ∧ 𝑁 ≠ 0 ) → 𝑁 ∈ ℤ ) |
| 54 |
|
dvdsval2 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝑀 ∈ ℤ ) → ( 𝑁 ∥ 𝑀 ↔ ( 𝑀 / 𝑁 ) ∈ ℤ ) ) |
| 55 |
54
|
biimpd |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝑀 ∈ ℤ ) → ( 𝑁 ∥ 𝑀 → ( 𝑀 / 𝑁 ) ∈ ℤ ) ) |
| 56 |
55
|
3com23 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( 𝑁 ∥ 𝑀 → ( 𝑀 / 𝑁 ) ∈ ℤ ) ) |
| 57 |
56
|
3expa |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ∧ 𝑁 ≠ 0 ) → ( 𝑁 ∥ 𝑀 → ( 𝑀 / 𝑁 ) ∈ ℤ ) ) |
| 58 |
23 57
|
sylan |
⊢ ( ( 𝑁 ∥ 𝑀 ∧ 𝑁 ≠ 0 ) → ( 𝑁 ∥ 𝑀 → ( 𝑀 / 𝑁 ) ∈ ℤ ) ) |
| 59 |
58
|
imp |
⊢ ( ( ( 𝑁 ∥ 𝑀 ∧ 𝑁 ≠ 0 ) ∧ 𝑁 ∥ 𝑀 ) → ( 𝑀 / 𝑁 ) ∈ ℤ ) |
| 60 |
59
|
anabss1 |
⊢ ( ( 𝑁 ∥ 𝑀 ∧ 𝑁 ≠ 0 ) → ( 𝑀 / 𝑁 ) ∈ ℤ ) |
| 61 |
53 60
|
jca |
⊢ ( ( 𝑁 ∥ 𝑀 ∧ 𝑁 ≠ 0 ) → ( 𝑁 ∈ ℤ ∧ ( 𝑀 / 𝑁 ) ∈ ℤ ) ) |
| 62 |
|
muldvds1 |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑀 / 𝑁 ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( 𝑁 · ( 𝑀 / 𝑁 ) ) ∥ 𝑛 → 𝑁 ∥ 𝑛 ) ) |
| 63 |
62
|
3expa |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ( 𝑀 / 𝑁 ) ∈ ℤ ) ∧ 𝑛 ∈ ℤ ) → ( ( 𝑁 · ( 𝑀 / 𝑁 ) ) ∥ 𝑛 → 𝑁 ∥ 𝑛 ) ) |
| 64 |
61 63
|
sylan |
⊢ ( ( ( 𝑁 ∥ 𝑀 ∧ 𝑁 ≠ 0 ) ∧ 𝑛 ∈ ℤ ) → ( ( 𝑁 · ( 𝑀 / 𝑁 ) ) ∥ 𝑛 → 𝑁 ∥ 𝑛 ) ) |
| 65 |
52 64
|
sylbird |
⊢ ( ( ( 𝑁 ∥ 𝑀 ∧ 𝑁 ≠ 0 ) ∧ 𝑛 ∈ ℤ ) → ( 𝑀 ∥ 𝑛 → 𝑁 ∥ 𝑛 ) ) |
| 66 |
65
|
ss2rabdv |
⊢ ( ( 𝑁 ∥ 𝑀 ∧ 𝑁 ≠ 0 ) → { 𝑛 ∈ ℤ ∣ 𝑀 ∥ 𝑛 } ⊆ { 𝑛 ∈ ℤ ∣ 𝑁 ∥ 𝑛 } ) |
| 67 |
|
breq2 |
⊢ ( 𝑛 = 𝑥 → ( 𝑀 ∥ 𝑛 ↔ 𝑀 ∥ 𝑥 ) ) |
| 68 |
67
|
cbvrabv |
⊢ { 𝑛 ∈ ℤ ∣ 𝑀 ∥ 𝑛 } = { 𝑥 ∈ ℤ ∣ 𝑀 ∥ 𝑥 } |
| 69 |
|
breq2 |
⊢ ( 𝑛 = 𝑥 → ( 𝑁 ∥ 𝑛 ↔ 𝑁 ∥ 𝑥 ) ) |
| 70 |
69
|
cbvrabv |
⊢ { 𝑛 ∈ ℤ ∣ 𝑁 ∥ 𝑛 } = { 𝑥 ∈ ℤ ∣ 𝑁 ∥ 𝑥 } |
| 71 |
66 68 70
|
3sstr3g |
⊢ ( ( 𝑁 ∥ 𝑀 ∧ 𝑁 ≠ 0 ) → { 𝑥 ∈ ℤ ∣ 𝑀 ∥ 𝑥 } ⊆ { 𝑥 ∈ ℤ ∣ 𝑁 ∥ 𝑥 } ) |
| 72 |
44 71
|
pm2.61dane |
⊢ ( 𝑁 ∥ 𝑀 → { 𝑥 ∈ ℤ ∣ 𝑀 ∥ 𝑥 } ⊆ { 𝑥 ∈ ℤ ∣ 𝑁 ∥ 𝑥 } ) |
| 73 |
|
breq1 |
⊢ ( 𝑛 = 𝑀 → ( 𝑛 ∥ 𝑥 ↔ 𝑀 ∥ 𝑥 ) ) |
| 74 |
73
|
rabbidv |
⊢ ( 𝑛 = 𝑀 → { 𝑥 ∈ ℤ ∣ 𝑛 ∥ 𝑥 } = { 𝑥 ∈ ℤ ∣ 𝑀 ∥ 𝑥 } ) |
| 75 |
73
|
abbidv |
⊢ ( 𝑛 = 𝑀 → { 𝑥 ∣ 𝑛 ∥ 𝑥 } = { 𝑥 ∣ 𝑀 ∥ 𝑥 } ) |
| 76 |
74 75
|
eqeq12d |
⊢ ( 𝑛 = 𝑀 → ( { 𝑥 ∈ ℤ ∣ 𝑛 ∥ 𝑥 } = { 𝑥 ∣ 𝑛 ∥ 𝑥 } ↔ { 𝑥 ∈ ℤ ∣ 𝑀 ∥ 𝑥 } = { 𝑥 ∣ 𝑀 ∥ 𝑥 } ) ) |
| 77 |
|
simpr |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑛 ∥ 𝑦 ) → 𝑛 ∥ 𝑦 ) |
| 78 |
|
dvdszrcl |
⊢ ( 𝑛 ∥ 𝑦 → ( 𝑛 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) |
| 79 |
78
|
simprd |
⊢ ( 𝑛 ∥ 𝑦 → 𝑦 ∈ ℤ ) |
| 80 |
79
|
ancri |
⊢ ( 𝑛 ∥ 𝑦 → ( 𝑦 ∈ ℤ ∧ 𝑛 ∥ 𝑦 ) ) |
| 81 |
77 80
|
impbii |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑛 ∥ 𝑦 ) ↔ 𝑛 ∥ 𝑦 ) |
| 82 |
|
breq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑛 ∥ 𝑥 ↔ 𝑛 ∥ 𝑦 ) ) |
| 83 |
82
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ ℤ ∣ 𝑛 ∥ 𝑥 } ↔ ( 𝑦 ∈ ℤ ∧ 𝑛 ∥ 𝑦 ) ) |
| 84 |
|
vex |
⊢ 𝑦 ∈ V |
| 85 |
84 82
|
elab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝑛 ∥ 𝑥 } ↔ 𝑛 ∥ 𝑦 ) |
| 86 |
81 83 85
|
3bitr4i |
⊢ ( 𝑦 ∈ { 𝑥 ∈ ℤ ∣ 𝑛 ∥ 𝑥 } ↔ 𝑦 ∈ { 𝑥 ∣ 𝑛 ∥ 𝑥 } ) |
| 87 |
86
|
eqriv |
⊢ { 𝑥 ∈ ℤ ∣ 𝑛 ∥ 𝑥 } = { 𝑥 ∣ 𝑛 ∥ 𝑥 } |
| 88 |
76 87
|
vtoclg |
⊢ ( 𝑀 ∈ ℤ → { 𝑥 ∈ ℤ ∣ 𝑀 ∥ 𝑥 } = { 𝑥 ∣ 𝑀 ∥ 𝑥 } ) |
| 89 |
88
|
adantr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ 𝑉 ) → { 𝑥 ∈ ℤ ∣ 𝑀 ∥ 𝑥 } = { 𝑥 ∣ 𝑀 ∥ 𝑥 } ) |
| 90 |
|
breq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 ∥ 𝑥 ↔ 𝑁 ∥ 𝑥 ) ) |
| 91 |
90
|
rabbidv |
⊢ ( 𝑛 = 𝑁 → { 𝑥 ∈ ℤ ∣ 𝑛 ∥ 𝑥 } = { 𝑥 ∈ ℤ ∣ 𝑁 ∥ 𝑥 } ) |
| 92 |
90
|
abbidv |
⊢ ( 𝑛 = 𝑁 → { 𝑥 ∣ 𝑛 ∥ 𝑥 } = { 𝑥 ∣ 𝑁 ∥ 𝑥 } ) |
| 93 |
91 92
|
eqeq12d |
⊢ ( 𝑛 = 𝑁 → ( { 𝑥 ∈ ℤ ∣ 𝑛 ∥ 𝑥 } = { 𝑥 ∣ 𝑛 ∥ 𝑥 } ↔ { 𝑥 ∈ ℤ ∣ 𝑁 ∥ 𝑥 } = { 𝑥 ∣ 𝑁 ∥ 𝑥 } ) ) |
| 94 |
93 87
|
vtoclg |
⊢ ( 𝑁 ∈ 𝑉 → { 𝑥 ∈ ℤ ∣ 𝑁 ∥ 𝑥 } = { 𝑥 ∣ 𝑁 ∥ 𝑥 } ) |
| 95 |
94
|
adantl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ 𝑉 ) → { 𝑥 ∈ ℤ ∣ 𝑁 ∥ 𝑥 } = { 𝑥 ∣ 𝑁 ∥ 𝑥 } ) |
| 96 |
89 95
|
sseq12d |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ 𝑉 ) → ( { 𝑥 ∈ ℤ ∣ 𝑀 ∥ 𝑥 } ⊆ { 𝑥 ∈ ℤ ∣ 𝑁 ∥ 𝑥 } ↔ { 𝑥 ∣ 𝑀 ∥ 𝑥 } ⊆ { 𝑥 ∣ 𝑁 ∥ 𝑥 } ) ) |
| 97 |
72 96
|
imbitrid |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ 𝑉 ) → ( 𝑁 ∥ 𝑀 → { 𝑥 ∣ 𝑀 ∥ 𝑥 } ⊆ { 𝑥 ∣ 𝑁 ∥ 𝑥 } ) ) |
| 98 |
9 15
|
sseq12i |
⊢ ( ( ∥ “ { 𝑀 } ) ⊆ ( ∥ “ { 𝑁 } ) ↔ { 𝑥 ∣ 𝑀 ∥ 𝑥 } ⊆ { 𝑥 ∣ 𝑁 ∥ 𝑥 } ) |
| 99 |
97 98
|
imbitrrdi |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ 𝑉 ) → ( 𝑁 ∥ 𝑀 → ( ∥ “ { 𝑀 } ) ⊆ ( ∥ “ { 𝑁 } ) ) ) |
| 100 |
19 99
|
impbid |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ 𝑉 ) → ( ( ∥ “ { 𝑀 } ) ⊆ ( ∥ “ { 𝑁 } ) ↔ 𝑁 ∥ 𝑀 ) ) |
| 101 |
1 2 100
|
syl2anc |
⊢ ( 𝜑 → ( ( ∥ “ { 𝑀 } ) ⊆ ( ∥ “ { 𝑁 } ) ↔ 𝑁 ∥ 𝑀 ) ) |