Step |
Hyp |
Ref |
Expression |
1 |
|
readdcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + 𝑦 ) ∈ ℝ ) |
2 |
|
addcl |
⊢ ( ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( 𝑚 + 𝑛 ) ∈ ℂ ) |
3 |
|
simp2l |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ∧ ( ( abs ‘ 𝑚 ) ≤ 𝑥 ∧ ( abs ‘ 𝑛 ) ≤ 𝑦 ) ) → 𝑚 ∈ ℂ ) |
4 |
|
simp2r |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ∧ ( ( abs ‘ 𝑚 ) ≤ 𝑥 ∧ ( abs ‘ 𝑛 ) ≤ 𝑦 ) ) → 𝑛 ∈ ℂ ) |
5 |
3 4
|
addcld |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ∧ ( ( abs ‘ 𝑚 ) ≤ 𝑥 ∧ ( abs ‘ 𝑛 ) ≤ 𝑦 ) ) → ( 𝑚 + 𝑛 ) ∈ ℂ ) |
6 |
5
|
abscld |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ∧ ( ( abs ‘ 𝑚 ) ≤ 𝑥 ∧ ( abs ‘ 𝑛 ) ≤ 𝑦 ) ) → ( abs ‘ ( 𝑚 + 𝑛 ) ) ∈ ℝ ) |
7 |
3
|
abscld |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ∧ ( ( abs ‘ 𝑚 ) ≤ 𝑥 ∧ ( abs ‘ 𝑛 ) ≤ 𝑦 ) ) → ( abs ‘ 𝑚 ) ∈ ℝ ) |
8 |
4
|
abscld |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ∧ ( ( abs ‘ 𝑚 ) ≤ 𝑥 ∧ ( abs ‘ 𝑛 ) ≤ 𝑦 ) ) → ( abs ‘ 𝑛 ) ∈ ℝ ) |
9 |
7 8
|
readdcld |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ∧ ( ( abs ‘ 𝑚 ) ≤ 𝑥 ∧ ( abs ‘ 𝑛 ) ≤ 𝑦 ) ) → ( ( abs ‘ 𝑚 ) + ( abs ‘ 𝑛 ) ) ∈ ℝ ) |
10 |
|
simp1l |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ∧ ( ( abs ‘ 𝑚 ) ≤ 𝑥 ∧ ( abs ‘ 𝑛 ) ≤ 𝑦 ) ) → 𝑥 ∈ ℝ ) |
11 |
|
simp1r |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ∧ ( ( abs ‘ 𝑚 ) ≤ 𝑥 ∧ ( abs ‘ 𝑛 ) ≤ 𝑦 ) ) → 𝑦 ∈ ℝ ) |
12 |
10 11
|
readdcld |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ∧ ( ( abs ‘ 𝑚 ) ≤ 𝑥 ∧ ( abs ‘ 𝑛 ) ≤ 𝑦 ) ) → ( 𝑥 + 𝑦 ) ∈ ℝ ) |
13 |
3 4
|
abstrid |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ∧ ( ( abs ‘ 𝑚 ) ≤ 𝑥 ∧ ( abs ‘ 𝑛 ) ≤ 𝑦 ) ) → ( abs ‘ ( 𝑚 + 𝑛 ) ) ≤ ( ( abs ‘ 𝑚 ) + ( abs ‘ 𝑛 ) ) ) |
14 |
|
simp3l |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ∧ ( ( abs ‘ 𝑚 ) ≤ 𝑥 ∧ ( abs ‘ 𝑛 ) ≤ 𝑦 ) ) → ( abs ‘ 𝑚 ) ≤ 𝑥 ) |
15 |
|
simp3r |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ∧ ( ( abs ‘ 𝑚 ) ≤ 𝑥 ∧ ( abs ‘ 𝑛 ) ≤ 𝑦 ) ) → ( abs ‘ 𝑛 ) ≤ 𝑦 ) |
16 |
7 8 10 11 14 15
|
le2addd |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ∧ ( ( abs ‘ 𝑚 ) ≤ 𝑥 ∧ ( abs ‘ 𝑛 ) ≤ 𝑦 ) ) → ( ( abs ‘ 𝑚 ) + ( abs ‘ 𝑛 ) ) ≤ ( 𝑥 + 𝑦 ) ) |
17 |
6 9 12 13 16
|
letrd |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ∧ ( ( abs ‘ 𝑚 ) ≤ 𝑥 ∧ ( abs ‘ 𝑛 ) ≤ 𝑦 ) ) → ( abs ‘ ( 𝑚 + 𝑛 ) ) ≤ ( 𝑥 + 𝑦 ) ) |
18 |
17
|
3expia |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ) → ( ( ( abs ‘ 𝑚 ) ≤ 𝑥 ∧ ( abs ‘ 𝑛 ) ≤ 𝑦 ) → ( abs ‘ ( 𝑚 + 𝑛 ) ) ≤ ( 𝑥 + 𝑦 ) ) ) |
19 |
1 2 18
|
o1of2 |
⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) → ( 𝐹 ∘f + 𝐺 ) ∈ 𝑂(1) ) |