| Step | Hyp | Ref | Expression | 
						
							| 1 |  | o1bdd2.1 | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 2 |  | o1bdd2.2 | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 3 |  | o1bdd2.3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 4 |  | o1bdd2.4 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝑂(1) ) | 
						
							| 5 |  | o1bdd2.5 | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℝ  ∧  𝐶  ≤  𝑦 ) )  →  𝑀  ∈  ℝ ) | 
						
							| 6 |  | o1bdd2.6 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  ( ( 𝑦  ∈  ℝ  ∧  𝐶  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( abs ‘ 𝐵 )  ≤  𝑀 ) | 
						
							| 7 | 3 | abscld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( abs ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 8 | 3 | lo1o12 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝑂(1)  ↔  ( 𝑥  ∈  𝐴  ↦  ( abs ‘ 𝐵 ) )  ∈  ≤𝑂(1) ) ) | 
						
							| 9 | 4 8 | mpbid | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( abs ‘ 𝐵 ) )  ∈  ≤𝑂(1) ) | 
						
							| 10 | 1 2 7 9 5 6 | lo1bddrp | ⊢ ( 𝜑  →  ∃ 𝑚  ∈  ℝ+ ∀ 𝑥  ∈  𝐴 ( abs ‘ 𝐵 )  ≤  𝑚 ) |