| Step | Hyp | Ref | Expression | 
						
							| 1 |  | o1co.1 | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ℂ ) | 
						
							| 2 |  | o1co.2 | ⊢ ( 𝜑  →  𝐹  ∈  𝑂(1) ) | 
						
							| 3 |  | o1co.3 | ⊢ ( 𝜑  →  𝐺 : 𝐵 ⟶ 𝐴 ) | 
						
							| 4 |  | o1co.4 | ⊢ ( 𝜑  →  𝐵  ⊆  ℝ ) | 
						
							| 5 |  | o1co.5 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℝ )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑦  →  𝑚  ≤  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 6 | 1 | fdmd | ⊢ ( 𝜑  →  dom  𝐹  =  𝐴 ) | 
						
							| 7 |  | o1dm | ⊢ ( 𝐹  ∈  𝑂(1)  →  dom  𝐹  ⊆  ℝ ) | 
						
							| 8 | 2 7 | syl | ⊢ ( 𝜑  →  dom  𝐹  ⊆  ℝ ) | 
						
							| 9 | 6 8 | eqsstrrd | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 10 |  | elo12 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐴  ⊆  ℝ )  →  ( 𝐹  ∈  𝑂(1)  ↔  ∃ 𝑚  ∈  ℝ ∃ 𝑛  ∈  ℝ ∀ 𝑧  ∈  𝐴 ( 𝑚  ≤  𝑧  →  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  𝑛 ) ) ) | 
						
							| 11 | 1 9 10 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  ∈  𝑂(1)  ↔  ∃ 𝑚  ∈  ℝ ∃ 𝑛  ∈  ℝ ∀ 𝑧  ∈  𝐴 ( 𝑚  ≤  𝑧  →  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  𝑛 ) ) ) | 
						
							| 12 | 2 11 | mpbid | ⊢ ( 𝜑  →  ∃ 𝑚  ∈  ℝ ∃ 𝑛  ∈  ℝ ∀ 𝑧  ∈  𝐴 ( 𝑚  ≤  𝑧  →  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  𝑛 ) ) | 
						
							| 13 |  | reeanv | ⊢ ( ∃ 𝑥  ∈  ℝ ∃ 𝑛  ∈  ℝ ( ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑦  →  𝑚  ≤  ( 𝐺 ‘ 𝑦 ) )  ∧  ∀ 𝑧  ∈  𝐴 ( 𝑚  ≤  𝑧  →  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  𝑛 ) )  ↔  ( ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑦  →  𝑚  ≤  ( 𝐺 ‘ 𝑦 ) )  ∧  ∃ 𝑛  ∈  ℝ ∀ 𝑧  ∈  𝐴 ( 𝑚  ≤  𝑧  →  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  𝑛 ) ) ) | 
						
							| 14 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℝ )  ∧  𝑥  ∈  ℝ )  ∧  𝑛  ∈  ℝ )  →  𝐺 : 𝐵 ⟶ 𝐴 ) | 
						
							| 15 | 14 | ffvelcdmda | ⊢ ( ( ( ( ( 𝜑  ∧  𝑚  ∈  ℝ )  ∧  𝑥  ∈  ℝ )  ∧  𝑛  ∈  ℝ )  ∧  𝑦  ∈  𝐵 )  →  ( 𝐺 ‘ 𝑦 )  ∈  𝐴 ) | 
						
							| 16 |  | breq2 | ⊢ ( 𝑧  =  ( 𝐺 ‘ 𝑦 )  →  ( 𝑚  ≤  𝑧  ↔  𝑚  ≤  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 17 |  | 2fveq3 | ⊢ ( 𝑧  =  ( 𝐺 ‘ 𝑦 )  →  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  =  ( abs ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) | 
						
							| 18 | 17 | breq1d | ⊢ ( 𝑧  =  ( 𝐺 ‘ 𝑦 )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  𝑛  ↔  ( abs ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) )  ≤  𝑛 ) ) | 
						
							| 19 | 16 18 | imbi12d | ⊢ ( 𝑧  =  ( 𝐺 ‘ 𝑦 )  →  ( ( 𝑚  ≤  𝑧  →  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  𝑛 )  ↔  ( 𝑚  ≤  ( 𝐺 ‘ 𝑦 )  →  ( abs ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) )  ≤  𝑛 ) ) ) | 
						
							| 20 | 19 | rspcva | ⊢ ( ( ( 𝐺 ‘ 𝑦 )  ∈  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ( 𝑚  ≤  𝑧  →  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  𝑛 ) )  →  ( 𝑚  ≤  ( 𝐺 ‘ 𝑦 )  →  ( abs ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) )  ≤  𝑛 ) ) | 
						
							| 21 | 15 20 | sylan | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑚  ∈  ℝ )  ∧  𝑥  ∈  ℝ )  ∧  𝑛  ∈  ℝ )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑧  ∈  𝐴 ( 𝑚  ≤  𝑧  →  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  𝑛 ) )  →  ( 𝑚  ≤  ( 𝐺 ‘ 𝑦 )  →  ( abs ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) )  ≤  𝑛 ) ) | 
						
							| 22 | 21 | an32s | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑚  ∈  ℝ )  ∧  𝑥  ∈  ℝ )  ∧  𝑛  ∈  ℝ )  ∧  ∀ 𝑧  ∈  𝐴 ( 𝑚  ≤  𝑧  →  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  𝑛 ) )  ∧  𝑦  ∈  𝐵 )  →  ( 𝑚  ≤  ( 𝐺 ‘ 𝑦 )  →  ( abs ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) )  ≤  𝑛 ) ) | 
						
							| 23 | 14 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑚  ∈  ℝ )  ∧  𝑥  ∈  ℝ )  ∧  𝑛  ∈  ℝ )  ∧  ∀ 𝑧  ∈  𝐴 ( 𝑚  ≤  𝑧  →  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  𝑛 ) )  →  𝐺 : 𝐵 ⟶ 𝐴 ) | 
						
							| 24 |  | fvco3 | ⊢ ( ( 𝐺 : 𝐵 ⟶ 𝐴  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝐹  ∘  𝐺 ) ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 25 | 23 24 | sylan | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑚  ∈  ℝ )  ∧  𝑥  ∈  ℝ )  ∧  𝑛  ∈  ℝ )  ∧  ∀ 𝑧  ∈  𝐴 ( 𝑚  ≤  𝑧  →  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  𝑛 ) )  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝐹  ∘  𝐺 ) ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 26 | 25 | fveq2d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑚  ∈  ℝ )  ∧  𝑥  ∈  ℝ )  ∧  𝑛  ∈  ℝ )  ∧  ∀ 𝑧  ∈  𝐴 ( 𝑚  ≤  𝑧  →  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  𝑛 ) )  ∧  𝑦  ∈  𝐵 )  →  ( abs ‘ ( ( 𝐹  ∘  𝐺 ) ‘ 𝑦 ) )  =  ( abs ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) | 
						
							| 27 | 26 | breq1d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑚  ∈  ℝ )  ∧  𝑥  ∈  ℝ )  ∧  𝑛  ∈  ℝ )  ∧  ∀ 𝑧  ∈  𝐴 ( 𝑚  ≤  𝑧  →  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  𝑛 ) )  ∧  𝑦  ∈  𝐵 )  →  ( ( abs ‘ ( ( 𝐹  ∘  𝐺 ) ‘ 𝑦 ) )  ≤  𝑛  ↔  ( abs ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) )  ≤  𝑛 ) ) | 
						
							| 28 | 22 27 | sylibrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑚  ∈  ℝ )  ∧  𝑥  ∈  ℝ )  ∧  𝑛  ∈  ℝ )  ∧  ∀ 𝑧  ∈  𝐴 ( 𝑚  ≤  𝑧  →  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  𝑛 ) )  ∧  𝑦  ∈  𝐵 )  →  ( 𝑚  ≤  ( 𝐺 ‘ 𝑦 )  →  ( abs ‘ ( ( 𝐹  ∘  𝐺 ) ‘ 𝑦 ) )  ≤  𝑛 ) ) | 
						
							| 29 | 28 | imim2d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑚  ∈  ℝ )  ∧  𝑥  ∈  ℝ )  ∧  𝑛  ∈  ℝ )  ∧  ∀ 𝑧  ∈  𝐴 ( 𝑚  ≤  𝑧  →  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  𝑛 ) )  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝑥  ≤  𝑦  →  𝑚  ≤  ( 𝐺 ‘ 𝑦 ) )  →  ( 𝑥  ≤  𝑦  →  ( abs ‘ ( ( 𝐹  ∘  𝐺 ) ‘ 𝑦 ) )  ≤  𝑛 ) ) ) | 
						
							| 30 | 29 | ralimdva | ⊢ ( ( ( ( ( 𝜑  ∧  𝑚  ∈  ℝ )  ∧  𝑥  ∈  ℝ )  ∧  𝑛  ∈  ℝ )  ∧  ∀ 𝑧  ∈  𝐴 ( 𝑚  ≤  𝑧  →  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  𝑛 ) )  →  ( ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑦  →  𝑚  ≤  ( 𝐺 ‘ 𝑦 ) )  →  ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑦  →  ( abs ‘ ( ( 𝐹  ∘  𝐺 ) ‘ 𝑦 ) )  ≤  𝑛 ) ) ) | 
						
							| 31 | 30 | expimpd | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℝ )  ∧  𝑥  ∈  ℝ )  ∧  𝑛  ∈  ℝ )  →  ( ( ∀ 𝑧  ∈  𝐴 ( 𝑚  ≤  𝑧  →  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  𝑛 )  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑦  →  𝑚  ≤  ( 𝐺 ‘ 𝑦 ) ) )  →  ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑦  →  ( abs ‘ ( ( 𝐹  ∘  𝐺 ) ‘ 𝑦 ) )  ≤  𝑛 ) ) ) | 
						
							| 32 | 31 | ancomsd | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℝ )  ∧  𝑥  ∈  ℝ )  ∧  𝑛  ∈  ℝ )  →  ( ( ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑦  →  𝑚  ≤  ( 𝐺 ‘ 𝑦 ) )  ∧  ∀ 𝑧  ∈  𝐴 ( 𝑚  ≤  𝑧  →  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  𝑛 ) )  →  ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑦  →  ( abs ‘ ( ( 𝐹  ∘  𝐺 ) ‘ 𝑦 ) )  ≤  𝑛 ) ) ) | 
						
							| 33 | 32 | reximdva | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℝ )  ∧  𝑥  ∈  ℝ )  →  ( ∃ 𝑛  ∈  ℝ ( ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑦  →  𝑚  ≤  ( 𝐺 ‘ 𝑦 ) )  ∧  ∀ 𝑧  ∈  𝐴 ( 𝑚  ≤  𝑧  →  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  𝑛 ) )  →  ∃ 𝑛  ∈  ℝ ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑦  →  ( abs ‘ ( ( 𝐹  ∘  𝐺 ) ‘ 𝑦 ) )  ≤  𝑛 ) ) ) | 
						
							| 34 | 33 | reximdva | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℝ )  →  ( ∃ 𝑥  ∈  ℝ ∃ 𝑛  ∈  ℝ ( ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑦  →  𝑚  ≤  ( 𝐺 ‘ 𝑦 ) )  ∧  ∀ 𝑧  ∈  𝐴 ( 𝑚  ≤  𝑧  →  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  𝑛 ) )  →  ∃ 𝑥  ∈  ℝ ∃ 𝑛  ∈  ℝ ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑦  →  ( abs ‘ ( ( 𝐹  ∘  𝐺 ) ‘ 𝑦 ) )  ≤  𝑛 ) ) ) | 
						
							| 35 | 13 34 | biimtrrid | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℝ )  →  ( ( ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑦  →  𝑚  ≤  ( 𝐺 ‘ 𝑦 ) )  ∧  ∃ 𝑛  ∈  ℝ ∀ 𝑧  ∈  𝐴 ( 𝑚  ≤  𝑧  →  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  𝑛 ) )  →  ∃ 𝑥  ∈  ℝ ∃ 𝑛  ∈  ℝ ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑦  →  ( abs ‘ ( ( 𝐹  ∘  𝐺 ) ‘ 𝑦 ) )  ≤  𝑛 ) ) ) | 
						
							| 36 | 5 35 | mpand | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℝ )  →  ( ∃ 𝑛  ∈  ℝ ∀ 𝑧  ∈  𝐴 ( 𝑚  ≤  𝑧  →  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  𝑛 )  →  ∃ 𝑥  ∈  ℝ ∃ 𝑛  ∈  ℝ ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑦  →  ( abs ‘ ( ( 𝐹  ∘  𝐺 ) ‘ 𝑦 ) )  ≤  𝑛 ) ) ) | 
						
							| 37 | 36 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑚  ∈  ℝ ∃ 𝑛  ∈  ℝ ∀ 𝑧  ∈  𝐴 ( 𝑚  ≤  𝑧  →  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  𝑛 )  →  ∃ 𝑥  ∈  ℝ ∃ 𝑛  ∈  ℝ ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑦  →  ( abs ‘ ( ( 𝐹  ∘  𝐺 ) ‘ 𝑦 ) )  ≤  𝑛 ) ) ) | 
						
							| 38 | 12 37 | mpd | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∃ 𝑛  ∈  ℝ ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑦  →  ( abs ‘ ( ( 𝐹  ∘  𝐺 ) ‘ 𝑦 ) )  ≤  𝑛 ) ) | 
						
							| 39 |  | fco | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐵 ⟶ 𝐴 )  →  ( 𝐹  ∘  𝐺 ) : 𝐵 ⟶ ℂ ) | 
						
							| 40 | 1 3 39 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐺 ) : 𝐵 ⟶ ℂ ) | 
						
							| 41 |  | elo12 | ⊢ ( ( ( 𝐹  ∘  𝐺 ) : 𝐵 ⟶ ℂ  ∧  𝐵  ⊆  ℝ )  →  ( ( 𝐹  ∘  𝐺 )  ∈  𝑂(1)  ↔  ∃ 𝑥  ∈  ℝ ∃ 𝑛  ∈  ℝ ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑦  →  ( abs ‘ ( ( 𝐹  ∘  𝐺 ) ‘ 𝑦 ) )  ≤  𝑛 ) ) ) | 
						
							| 42 | 40 4 41 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐹  ∘  𝐺 )  ∈  𝑂(1)  ↔  ∃ 𝑥  ∈  ℝ ∃ 𝑛  ∈  ℝ ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑦  →  ( abs ‘ ( ( 𝐹  ∘  𝐺 ) ‘ 𝑦 ) )  ≤  𝑛 ) ) ) | 
						
							| 43 | 38 42 | mpbird | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐺 )  ∈  𝑂(1) ) |