Step |
Hyp |
Ref |
Expression |
1 |
|
o1co.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
2 |
|
o1co.2 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑂(1) ) |
3 |
|
o1co.3 |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
4 |
|
o1co.4 |
⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) |
5 |
|
o1co.5 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑚 ≤ ( 𝐺 ‘ 𝑦 ) ) ) |
6 |
1
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
7 |
|
o1dm |
⊢ ( 𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ ) |
8 |
2 7
|
syl |
⊢ ( 𝜑 → dom 𝐹 ⊆ ℝ ) |
9 |
6 8
|
eqsstrrd |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
10 |
|
elo12 |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → ( 𝐹 ∈ 𝑂(1) ↔ ∃ 𝑚 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ) |
11 |
1 9 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∈ 𝑂(1) ↔ ∃ 𝑚 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ) |
12 |
2 11
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑚 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) |
13 |
|
reeanv |
⊢ ( ∃ 𝑥 ∈ ℝ ∃ 𝑛 ∈ ℝ ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑚 ≤ ( 𝐺 ‘ 𝑦 ) ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ↔ ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑚 ≤ ( 𝐺 ‘ 𝑦 ) ) ∧ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ) |
14 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℝ ) → 𝐺 : 𝐵 ⟶ 𝐴 ) |
15 |
14
|
ffvelrnda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) |
16 |
|
breq2 |
⊢ ( 𝑧 = ( 𝐺 ‘ 𝑦 ) → ( 𝑚 ≤ 𝑧 ↔ 𝑚 ≤ ( 𝐺 ‘ 𝑦 ) ) ) |
17 |
|
2fveq3 |
⊢ ( 𝑧 = ( 𝐺 ‘ 𝑦 ) → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
18 |
17
|
breq1d |
⊢ ( 𝑧 = ( 𝐺 ‘ 𝑦 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ↔ ( abs ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ≤ 𝑛 ) ) |
19 |
16 18
|
imbi12d |
⊢ ( 𝑧 = ( 𝐺 ‘ 𝑦 ) → ( ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ↔ ( 𝑚 ≤ ( 𝐺 ‘ 𝑦 ) → ( abs ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ≤ 𝑛 ) ) ) |
20 |
19
|
rspcva |
⊢ ( ( ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ( 𝑚 ≤ ( 𝐺 ‘ 𝑦 ) → ( abs ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ≤ 𝑛 ) ) |
21 |
15 20
|
sylan |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ( 𝑚 ≤ ( 𝐺 ‘ 𝑦 ) → ( abs ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ≤ 𝑛 ) ) |
22 |
21
|
an32s |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℝ ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑚 ≤ ( 𝐺 ‘ 𝑦 ) → ( abs ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ≤ 𝑛 ) ) |
23 |
14
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℝ ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → 𝐺 : 𝐵 ⟶ 𝐴 ) |
24 |
|
fvco3 |
⊢ ( ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) |
25 |
23 24
|
sylan |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℝ ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) |
26 |
25
|
fveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℝ ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( abs ‘ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
27 |
26
|
breq1d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℝ ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( ( abs ‘ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ≤ 𝑛 ↔ ( abs ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ≤ 𝑛 ) ) |
28 |
22 27
|
sylibrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℝ ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑚 ≤ ( 𝐺 ‘ 𝑦 ) → ( abs ‘ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ≤ 𝑛 ) ) |
29 |
28
|
imim2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℝ ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ≤ 𝑦 → 𝑚 ≤ ( 𝐺 ‘ 𝑦 ) ) → ( 𝑥 ≤ 𝑦 → ( abs ‘ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ≤ 𝑛 ) ) ) |
30 |
29
|
ralimdva |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℝ ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑚 ≤ ( 𝐺 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ≤ 𝑛 ) ) ) |
31 |
30
|
expimpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℝ ) → ( ( ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑚 ≤ ( 𝐺 ‘ 𝑦 ) ) ) → ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ≤ 𝑛 ) ) ) |
32 |
31
|
ancomsd |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℝ ) → ( ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑚 ≤ ( 𝐺 ‘ 𝑦 ) ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ≤ 𝑛 ) ) ) |
33 |
32
|
reximdva |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑛 ∈ ℝ ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑚 ≤ ( 𝐺 ‘ 𝑦 ) ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ∃ 𝑛 ∈ ℝ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ≤ 𝑛 ) ) ) |
34 |
33
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → ( ∃ 𝑥 ∈ ℝ ∃ 𝑛 ∈ ℝ ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑚 ≤ ( 𝐺 ‘ 𝑦 ) ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ∃ 𝑥 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ≤ 𝑛 ) ) ) |
35 |
13 34
|
syl5bir |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → ( ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑚 ≤ ( 𝐺 ‘ 𝑦 ) ) ∧ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ∃ 𝑥 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ≤ 𝑛 ) ) ) |
36 |
5 35
|
mpand |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → ( ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) → ∃ 𝑥 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ≤ 𝑛 ) ) ) |
37 |
36
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑚 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑛 ) → ∃ 𝑥 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ≤ 𝑛 ) ) ) |
38 |
12 37
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ≤ 𝑛 ) ) |
39 |
|
fco |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) → ( 𝐹 ∘ 𝐺 ) : 𝐵 ⟶ ℂ ) |
40 |
1 3 39
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) : 𝐵 ⟶ ℂ ) |
41 |
|
elo12 |
⊢ ( ( ( 𝐹 ∘ 𝐺 ) : 𝐵 ⟶ ℂ ∧ 𝐵 ⊆ ℝ ) → ( ( 𝐹 ∘ 𝐺 ) ∈ 𝑂(1) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ≤ 𝑛 ) ) ) |
42 |
40 4 41
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐺 ) ∈ 𝑂(1) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ≤ 𝑛 ) ) ) |
43 |
38 42
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) ∈ 𝑂(1) ) |