| Step | Hyp | Ref | Expression | 
						
							| 1 |  | o1compt.1 | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ℂ ) | 
						
							| 2 |  | o1compt.2 | ⊢ ( 𝜑  →  𝐹  ∈  𝑂(1) ) | 
						
							| 3 |  | o1compt.3 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  𝐶  ∈  𝐴 ) | 
						
							| 4 |  | o1compt.4 | ⊢ ( 𝜑  →  𝐵  ⊆  ℝ ) | 
						
							| 5 |  | o1compt.5 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℝ )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑦  →  𝑚  ≤  𝐶 ) ) | 
						
							| 6 | 3 | fmpttd | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐵  ↦  𝐶 ) : 𝐵 ⟶ 𝐴 ) | 
						
							| 7 |  | nfv | ⊢ Ⅎ 𝑦 𝑥  ≤  𝑧 | 
						
							| 8 |  | nfcv | ⊢ Ⅎ 𝑦 𝑚 | 
						
							| 9 |  | nfcv | ⊢ Ⅎ 𝑦  ≤ | 
						
							| 10 |  | nffvmpt1 | ⊢ Ⅎ 𝑦 ( ( 𝑦  ∈  𝐵  ↦  𝐶 ) ‘ 𝑧 ) | 
						
							| 11 | 8 9 10 | nfbr | ⊢ Ⅎ 𝑦 𝑚  ≤  ( ( 𝑦  ∈  𝐵  ↦  𝐶 ) ‘ 𝑧 ) | 
						
							| 12 | 7 11 | nfim | ⊢ Ⅎ 𝑦 ( 𝑥  ≤  𝑧  →  𝑚  ≤  ( ( 𝑦  ∈  𝐵  ↦  𝐶 ) ‘ 𝑧 ) ) | 
						
							| 13 |  | nfv | ⊢ Ⅎ 𝑧 ( 𝑥  ≤  𝑦  →  𝑚  ≤  ( ( 𝑦  ∈  𝐵  ↦  𝐶 ) ‘ 𝑦 ) ) | 
						
							| 14 |  | breq2 | ⊢ ( 𝑧  =  𝑦  →  ( 𝑥  ≤  𝑧  ↔  𝑥  ≤  𝑦 ) ) | 
						
							| 15 |  | fveq2 | ⊢ ( 𝑧  =  𝑦  →  ( ( 𝑦  ∈  𝐵  ↦  𝐶 ) ‘ 𝑧 )  =  ( ( 𝑦  ∈  𝐵  ↦  𝐶 ) ‘ 𝑦 ) ) | 
						
							| 16 | 15 | breq2d | ⊢ ( 𝑧  =  𝑦  →  ( 𝑚  ≤  ( ( 𝑦  ∈  𝐵  ↦  𝐶 ) ‘ 𝑧 )  ↔  𝑚  ≤  ( ( 𝑦  ∈  𝐵  ↦  𝐶 ) ‘ 𝑦 ) ) ) | 
						
							| 17 | 14 16 | imbi12d | ⊢ ( 𝑧  =  𝑦  →  ( ( 𝑥  ≤  𝑧  →  𝑚  ≤  ( ( 𝑦  ∈  𝐵  ↦  𝐶 ) ‘ 𝑧 ) )  ↔  ( 𝑥  ≤  𝑦  →  𝑚  ≤  ( ( 𝑦  ∈  𝐵  ↦  𝐶 ) ‘ 𝑦 ) ) ) ) | 
						
							| 18 | 12 13 17 | cbvralw | ⊢ ( ∀ 𝑧  ∈  𝐵 ( 𝑥  ≤  𝑧  →  𝑚  ≤  ( ( 𝑦  ∈  𝐵  ↦  𝐶 ) ‘ 𝑧 ) )  ↔  ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑦  →  𝑚  ≤  ( ( 𝑦  ∈  𝐵  ↦  𝐶 ) ‘ 𝑦 ) ) ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  𝐵 ) | 
						
							| 20 |  | eqid | ⊢ ( 𝑦  ∈  𝐵  ↦  𝐶 )  =  ( 𝑦  ∈  𝐵  ↦  𝐶 ) | 
						
							| 21 | 20 | fvmpt2 | ⊢ ( ( 𝑦  ∈  𝐵  ∧  𝐶  ∈  𝐴 )  →  ( ( 𝑦  ∈  𝐵  ↦  𝐶 ) ‘ 𝑦 )  =  𝐶 ) | 
						
							| 22 | 19 3 21 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝑦  ∈  𝐵  ↦  𝐶 ) ‘ 𝑦 )  =  𝐶 ) | 
						
							| 23 | 22 | breq2d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  ( 𝑚  ≤  ( ( 𝑦  ∈  𝐵  ↦  𝐶 ) ‘ 𝑦 )  ↔  𝑚  ≤  𝐶 ) ) | 
						
							| 24 | 23 | imbi2d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝑥  ≤  𝑦  →  𝑚  ≤  ( ( 𝑦  ∈  𝐵  ↦  𝐶 ) ‘ 𝑦 ) )  ↔  ( 𝑥  ≤  𝑦  →  𝑚  ≤  𝐶 ) ) ) | 
						
							| 25 | 24 | ralbidva | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑦  →  𝑚  ≤  ( ( 𝑦  ∈  𝐵  ↦  𝐶 ) ‘ 𝑦 ) )  ↔  ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑦  →  𝑚  ≤  𝐶 ) ) ) | 
						
							| 26 | 18 25 | bitrid | ⊢ ( 𝜑  →  ( ∀ 𝑧  ∈  𝐵 ( 𝑥  ≤  𝑧  →  𝑚  ≤  ( ( 𝑦  ∈  𝐵  ↦  𝐶 ) ‘ 𝑧 ) )  ↔  ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑦  →  𝑚  ≤  𝐶 ) ) ) | 
						
							| 27 | 26 | rexbidv | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  𝐵 ( 𝑥  ≤  𝑧  →  𝑚  ≤  ( ( 𝑦  ∈  𝐵  ↦  𝐶 ) ‘ 𝑧 ) )  ↔  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑦  →  𝑚  ≤  𝐶 ) ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℝ )  →  ( ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  𝐵 ( 𝑥  ≤  𝑧  →  𝑚  ≤  ( ( 𝑦  ∈  𝐵  ↦  𝐶 ) ‘ 𝑧 ) )  ↔  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑦  →  𝑚  ≤  𝐶 ) ) ) | 
						
							| 29 | 5 28 | mpbird | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℝ )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  𝐵 ( 𝑥  ≤  𝑧  →  𝑚  ≤  ( ( 𝑦  ∈  𝐵  ↦  𝐶 ) ‘ 𝑧 ) ) ) | 
						
							| 30 | 1 2 6 4 29 | o1co | ⊢ ( 𝜑  →  ( 𝐹  ∘  ( 𝑦  ∈  𝐵  ↦  𝐶 ) )  ∈  𝑂(1) ) |