Metamath Proof Explorer
Description: A constant function is eventually bounded. (Contributed by Mario
Carneiro, 15-Sep-2014) (Proof shortened by Mario Carneiro, 26-May-2016)
|
|
Ref |
Expression |
|
Assertion |
o1const |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rlimconst |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐵 ) |
2 |
|
rlimo1 |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐵 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ) |
3 |
1 2
|
syl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ) |