Step |
Hyp |
Ref |
Expression |
1 |
|
rlimeq.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
2 |
|
rlimeq.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
3 |
|
rlimeq.3 |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
4 |
|
rlimeq.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ≤ 𝑥 ) ) → 𝐵 = 𝐶 ) |
5 |
1
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
6 |
2
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐶 ) ∈ ℝ ) |
7 |
4
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ≤ 𝑥 ) ) → ( abs ‘ 𝐵 ) = ( abs ‘ 𝐶 ) ) |
8 |
5 6 3 7
|
lo1eq |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ ≤𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐶 ) ) ∈ ≤𝑂(1) ) ) |
9 |
1
|
lo1o12 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ ≤𝑂(1) ) ) |
10 |
2
|
lo1o12 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐶 ) ) ∈ ≤𝑂(1) ) ) |
11 |
8 9 10
|
3bitr4d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝑂(1) ) ) |