Metamath Proof Explorer


Theorem o1f

Description: An eventually bounded function is a function. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion o1f ( 𝐹 ∈ 𝑂(1) → 𝐹 : dom 𝐹 ⟶ ℂ )

Proof

Step Hyp Ref Expression
1 elo1 ( 𝐹 ∈ 𝑂(1) ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( abs ‘ ( 𝐹𝑦 ) ) ≤ 𝑚 ) )
2 1 simplbi ( 𝐹 ∈ 𝑂(1) → 𝐹 ∈ ( ℂ ↑pm ℝ ) )
3 cnex ℂ ∈ V
4 reex ℝ ∈ V
5 3 4 elpm2 ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℝ ) )
6 5 simplbi ( 𝐹 ∈ ( ℂ ↑pm ℝ ) → 𝐹 : dom 𝐹 ⟶ ℂ )
7 2 6 syl ( 𝐹 ∈ 𝑂(1) → 𝐹 : dom 𝐹 ⟶ ℂ )