Description: An eventually bounded function is a function. (Contributed by Mario Carneiro, 15-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | o1f | ⊢ ( 𝐹 ∈ 𝑂(1) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elo1 | ⊢ ( 𝐹 ∈ 𝑂(1) ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ) ) | |
2 | 1 | simplbi | ⊢ ( 𝐹 ∈ 𝑂(1) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
3 | cnex | ⊢ ℂ ∈ V | |
4 | reex | ⊢ ℝ ∈ V | |
5 | 3 4 | elpm2 | ⊢ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℝ ) ) |
6 | 5 | simplbi | ⊢ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
7 | 2 6 | syl | ⊢ ( 𝐹 ∈ 𝑂(1) → 𝐹 : dom 𝐹 ⟶ ℂ ) |