| Step | Hyp | Ref | Expression | 
						
							| 1 |  | o1fsum.1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | o1fsum.2 | ⊢ ( 𝜑  →  ( 𝑘  ∈  ℕ  ↦  𝐴 )  ∈  𝑂(1) ) | 
						
							| 3 |  | nnssre | ⊢ ℕ  ⊆  ℝ | 
						
							| 4 | 3 | a1i | ⊢ ( 𝜑  →  ℕ  ⊆  ℝ ) | 
						
							| 5 | 1 2 | o1mptrcl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝐴  ∈  ℂ ) | 
						
							| 6 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 7 | 4 5 6 | elo1mpt2 | ⊢ ( 𝜑  →  ( ( 𝑘  ∈  ℕ  ↦  𝐴 )  ∈  𝑂(1)  ↔  ∃ 𝑐  ∈  ( 1 [,) +∞ ) ∃ 𝑚  ∈  ℝ ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) ) ) | 
						
							| 8 | 2 7 | mpbid | ⊢ ( 𝜑  →  ∃ 𝑐  ∈  ( 1 [,) +∞ ) ∃ 𝑚  ∈  ℝ ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) ) | 
						
							| 9 |  | rpssre | ⊢ ℝ+  ⊆  ℝ | 
						
							| 10 | 9 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  →  ℝ+  ⊆  ℝ ) | 
						
							| 11 |  | csbeq1a | ⊢ ( 𝑘  =  𝑛  →  𝐴  =  ⦋ 𝑛  /  𝑘 ⦌ 𝐴 ) | 
						
							| 12 |  | nfcv | ⊢ Ⅎ 𝑛 𝐴 | 
						
							| 13 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑛  /  𝑘 ⦌ 𝐴 | 
						
							| 14 | 11 12 13 | cbvsum | ⊢ Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ⦋ 𝑛  /  𝑘 ⦌ 𝐴 | 
						
							| 15 |  | fzfid | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  𝑥  ∈  ℝ+ )  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∈  Fin ) | 
						
							| 16 |  | o1f | ⊢ ( ( 𝑘  ∈  ℕ  ↦  𝐴 )  ∈  𝑂(1)  →  ( 𝑘  ∈  ℕ  ↦  𝐴 ) : dom  ( 𝑘  ∈  ℕ  ↦  𝐴 ) ⟶ ℂ ) | 
						
							| 17 | 2 16 | syl | ⊢ ( 𝜑  →  ( 𝑘  ∈  ℕ  ↦  𝐴 ) : dom  ( 𝑘  ∈  ℕ  ↦  𝐴 ) ⟶ ℂ ) | 
						
							| 18 | 1 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ℕ 𝐴  ∈  𝑉 ) | 
						
							| 19 |  | dmmptg | ⊢ ( ∀ 𝑘  ∈  ℕ 𝐴  ∈  𝑉  →  dom  ( 𝑘  ∈  ℕ  ↦  𝐴 )  =  ℕ ) | 
						
							| 20 | 18 19 | syl | ⊢ ( 𝜑  →  dom  ( 𝑘  ∈  ℕ  ↦  𝐴 )  =  ℕ ) | 
						
							| 21 | 20 | feq2d | ⊢ ( 𝜑  →  ( ( 𝑘  ∈  ℕ  ↦  𝐴 ) : dom  ( 𝑘  ∈  ℕ  ↦  𝐴 ) ⟶ ℂ  ↔  ( 𝑘  ∈  ℕ  ↦  𝐴 ) : ℕ ⟶ ℂ ) ) | 
						
							| 22 | 17 21 | mpbid | ⊢ ( 𝜑  →  ( 𝑘  ∈  ℕ  ↦  𝐴 ) : ℕ ⟶ ℂ ) | 
						
							| 23 |  | eqid | ⊢ ( 𝑘  ∈  ℕ  ↦  𝐴 )  =  ( 𝑘  ∈  ℕ  ↦  𝐴 ) | 
						
							| 24 | 23 | fmpt | ⊢ ( ∀ 𝑘  ∈  ℕ 𝐴  ∈  ℂ  ↔  ( 𝑘  ∈  ℕ  ↦  𝐴 ) : ℕ ⟶ ℂ ) | 
						
							| 25 | 22 24 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ℕ 𝐴  ∈  ℂ ) | 
						
							| 26 | 25 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  𝑥  ∈  ℝ+ )  →  ∀ 𝑘  ∈  ℕ 𝐴  ∈  ℂ ) | 
						
							| 27 |  | elfznn | ⊢ ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 28 | 13 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑛  /  𝑘 ⦌ 𝐴  ∈  ℂ | 
						
							| 29 | 11 | eleq1d | ⊢ ( 𝑘  =  𝑛  →  ( 𝐴  ∈  ℂ  ↔  ⦋ 𝑛  /  𝑘 ⦌ 𝐴  ∈  ℂ ) ) | 
						
							| 30 | 28 29 | rspc | ⊢ ( 𝑛  ∈  ℕ  →  ( ∀ 𝑘  ∈  ℕ 𝐴  ∈  ℂ  →  ⦋ 𝑛  /  𝑘 ⦌ 𝐴  ∈  ℂ ) ) | 
						
							| 31 | 30 | impcom | ⊢ ( ( ∀ 𝑘  ∈  ℕ 𝐴  ∈  ℂ  ∧  𝑛  ∈  ℕ )  →  ⦋ 𝑛  /  𝑘 ⦌ 𝐴  ∈  ℂ ) | 
						
							| 32 | 26 27 31 | syl2an | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ⦋ 𝑛  /  𝑘 ⦌ 𝐴  ∈  ℂ ) | 
						
							| 33 | 15 32 | fsumcl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  𝑥  ∈  ℝ+ )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ⦋ 𝑛  /  𝑘 ⦌ 𝐴  ∈  ℂ ) | 
						
							| 34 | 14 33 | eqeltrid | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  𝑥  ∈  ℝ+ )  →  Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴  ∈  ℂ ) | 
						
							| 35 |  | rpcn | ⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ∈  ℂ ) | 
						
							| 36 | 35 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  𝑥  ∈  ℝ+ )  →  𝑥  ∈  ℂ ) | 
						
							| 37 |  | rpne0 | ⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ≠  0 ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  𝑥  ∈  ℝ+ )  →  𝑥  ≠  0 ) | 
						
							| 39 | 34 36 38 | divcld | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  𝑥  ∈  ℝ+ )  →  ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴  /  𝑥 )  ∈  ℂ ) | 
						
							| 40 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  →  𝑐  ∈  ( 1 [,) +∞ ) ) | 
						
							| 41 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 42 |  | elicopnf | ⊢ ( 1  ∈  ℝ  →  ( 𝑐  ∈  ( 1 [,) +∞ )  ↔  ( 𝑐  ∈  ℝ  ∧  1  ≤  𝑐 ) ) ) | 
						
							| 43 | 41 42 | ax-mp | ⊢ ( 𝑐  ∈  ( 1 [,) +∞ )  ↔  ( 𝑐  ∈  ℝ  ∧  1  ≤  𝑐 ) ) | 
						
							| 44 | 40 43 | sylib | ⊢ ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  →  ( 𝑐  ∈  ℝ  ∧  1  ≤  𝑐 ) ) | 
						
							| 45 | 44 | simpld | ⊢ ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  →  𝑐  ∈  ℝ ) | 
						
							| 46 |  | fzfid | ⊢ ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  →  ( 1 ... ( ⌊ ‘ 𝑐 ) )  ∈  Fin ) | 
						
							| 47 | 25 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  →  ∀ 𝑘  ∈  ℕ 𝐴  ∈  ℂ ) | 
						
							| 48 |  | elfznn | ⊢ ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 49 | 47 48 31 | syl2an | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) )  →  ⦋ 𝑛  /  𝑘 ⦌ 𝐴  ∈  ℂ ) | 
						
							| 50 | 49 | abscld | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) )  →  ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  ∈  ℝ ) | 
						
							| 51 | 46 50 | fsumrecl | ⊢ ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  ∈  ℝ ) | 
						
							| 52 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  →  𝑚  ∈  ℝ ) | 
						
							| 53 | 51 52 | readdcld | ⊢ ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  +  𝑚 )  ∈  ℝ ) | 
						
							| 54 | 34 36 38 | absdivd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  𝑥  ∈  ℝ+ )  →  ( abs ‘ ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴  /  𝑥 ) )  =  ( ( abs ‘ Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 )  /  ( abs ‘ 𝑥 ) ) ) | 
						
							| 55 | 54 | adantrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( abs ‘ ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴  /  𝑥 ) )  =  ( ( abs ‘ Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 )  /  ( abs ‘ 𝑥 ) ) ) | 
						
							| 56 |  | rprege0 | ⊢ ( 𝑥  ∈  ℝ+  →  ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 ) ) | 
						
							| 57 | 56 | ad2antrl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 ) ) | 
						
							| 58 |  | absid | ⊢ ( ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 )  →  ( abs ‘ 𝑥 )  =  𝑥 ) | 
						
							| 59 | 57 58 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( abs ‘ 𝑥 )  =  𝑥 ) | 
						
							| 60 | 59 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( ( abs ‘ Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 )  /  ( abs ‘ 𝑥 ) )  =  ( ( abs ‘ Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 )  /  𝑥 ) ) | 
						
							| 61 | 55 60 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( abs ‘ ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴  /  𝑥 ) )  =  ( ( abs ‘ Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 )  /  𝑥 ) ) | 
						
							| 62 | 34 | adantrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴  ∈  ℂ ) | 
						
							| 63 | 62 | abscld | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( abs ‘ Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 )  ∈  ℝ ) | 
						
							| 64 |  | fzfid | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∈  Fin ) | 
						
							| 65 | 47 27 31 | syl2an | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ⦋ 𝑛  /  𝑘 ⦌ 𝐴  ∈  ℂ ) | 
						
							| 66 | 65 | adantlr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ⦋ 𝑛  /  𝑘 ⦌ 𝐴  ∈  ℂ ) | 
						
							| 67 | 66 | abscld | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  ∈  ℝ ) | 
						
							| 68 | 64 67 | fsumrecl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  ∈  ℝ ) | 
						
							| 69 | 57 | simpld | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 70 | 51 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  ∈  ℝ ) | 
						
							| 71 | 52 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  𝑚  ∈  ℝ ) | 
						
							| 72 | 70 71 | readdcld | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  +  𝑚 )  ∈  ℝ ) | 
						
							| 73 | 69 72 | remulcld | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( 𝑥  ·  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  +  𝑚 ) )  ∈  ℝ ) | 
						
							| 74 | 14 | fveq2i | ⊢ ( abs ‘ Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 )  =  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ⦋ 𝑛  /  𝑘 ⦌ 𝐴 ) | 
						
							| 75 | 64 66 | fsumabs | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  ≤  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 ) ) | 
						
							| 76 | 74 75 | eqbrtrid | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( abs ‘ Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 )  ≤  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 ) ) | 
						
							| 77 |  | fzfid | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) )  ∈  Fin ) | 
						
							| 78 |  | ssun2 | ⊢ ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) )  ⊆  ( ( 1 ... ( ⌊ ‘ 𝑐 ) )  ∪  ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) ) ) | 
						
							| 79 |  | flge1nn | ⊢ ( ( 𝑐  ∈  ℝ  ∧  1  ≤  𝑐 )  →  ( ⌊ ‘ 𝑐 )  ∈  ℕ ) | 
						
							| 80 | 44 79 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  →  ( ⌊ ‘ 𝑐 )  ∈  ℕ ) | 
						
							| 81 | 80 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( ⌊ ‘ 𝑐 )  ∈  ℕ ) | 
						
							| 82 | 81 | nnred | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( ⌊ ‘ 𝑐 )  ∈  ℝ ) | 
						
							| 83 | 45 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  𝑐  ∈  ℝ ) | 
						
							| 84 |  | flle | ⊢ ( 𝑐  ∈  ℝ  →  ( ⌊ ‘ 𝑐 )  ≤  𝑐 ) | 
						
							| 85 | 83 84 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( ⌊ ‘ 𝑐 )  ≤  𝑐 ) | 
						
							| 86 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  𝑐  ≤  𝑥 ) | 
						
							| 87 | 82 83 69 85 86 | letrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( ⌊ ‘ 𝑐 )  ≤  𝑥 ) | 
						
							| 88 |  | fznnfl | ⊢ ( 𝑥  ∈  ℝ  →  ( ( ⌊ ‘ 𝑐 )  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ↔  ( ( ⌊ ‘ 𝑐 )  ∈  ℕ  ∧  ( ⌊ ‘ 𝑐 )  ≤  𝑥 ) ) ) | 
						
							| 89 | 69 88 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( ( ⌊ ‘ 𝑐 )  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ↔  ( ( ⌊ ‘ 𝑐 )  ∈  ℕ  ∧  ( ⌊ ‘ 𝑐 )  ≤  𝑥 ) ) ) | 
						
							| 90 | 81 87 89 | mpbir2and | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( ⌊ ‘ 𝑐 )  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) | 
						
							| 91 |  | fzsplit | ⊢ ( ( ⌊ ‘ 𝑐 )  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  =  ( ( 1 ... ( ⌊ ‘ 𝑐 ) )  ∪  ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) ) ) ) | 
						
							| 92 | 90 91 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  =  ( ( 1 ... ( ⌊ ‘ 𝑐 ) )  ∪  ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) ) ) ) | 
						
							| 93 | 78 92 | sseqtrrid | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) )  ⊆  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) | 
						
							| 94 | 93 | sselda | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) | 
						
							| 95 | 65 | abscld | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  ∈  ℝ ) | 
						
							| 96 | 95 | adantlr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  ∈  ℝ ) | 
						
							| 97 | 94 96 | syldan | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  ∈  ℝ ) | 
						
							| 98 | 77 97 | fsumrecl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  ∈  ℝ ) | 
						
							| 99 | 69 70 | remulcld | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( 𝑥  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 ) )  ∈  ℝ ) | 
						
							| 100 | 69 71 | remulcld | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( 𝑥  ·  𝑚 )  ∈  ℝ ) | 
						
							| 101 | 70 | recnd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  ∈  ℂ ) | 
						
							| 102 | 101 | mullidd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( 1  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 ) ) | 
						
							| 103 |  | 1red | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  1  ∈  ℝ ) | 
						
							| 104 | 49 | absge0d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) )  →  0  ≤  ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 ) ) | 
						
							| 105 | 46 50 104 | fsumge0 | ⊢ ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  →  0  ≤  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 ) ) | 
						
							| 106 | 51 105 | jca | ⊢ ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  ∈  ℝ  ∧  0  ≤  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 ) ) ) | 
						
							| 107 | 106 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  ∈  ℝ  ∧  0  ≤  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 ) ) ) | 
						
							| 108 | 44 | simprd | ⊢ ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  →  1  ≤  𝑐 ) | 
						
							| 109 | 108 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  1  ≤  𝑐 ) | 
						
							| 110 | 103 83 69 109 86 | letrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  1  ≤  𝑥 ) | 
						
							| 111 |  | lemul1a | ⊢ ( ( ( 1  ∈  ℝ  ∧  𝑥  ∈  ℝ  ∧  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  ∈  ℝ  ∧  0  ≤  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 ) ) )  ∧  1  ≤  𝑥 )  →  ( 1  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 ) )  ≤  ( 𝑥  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 ) ) ) | 
						
							| 112 | 103 69 107 110 111 | syl31anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( 1  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 ) )  ≤  ( 𝑥  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 ) ) ) | 
						
							| 113 | 102 112 | eqbrtrrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  ≤  ( 𝑥  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 ) ) ) | 
						
							| 114 |  | hashcl | ⊢ ( ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) )  ∈  Fin  →  ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) ) )  ∈  ℕ0 ) | 
						
							| 115 |  | nn0re | ⊢ ( ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) ) )  ∈  ℕ0  →  ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 116 | 77 114 115 | 3syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 117 | 116 71 | remulcld | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) ) )  ·  𝑚 )  ∈  ℝ ) | 
						
							| 118 | 71 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑚  ∈  ℝ ) | 
						
							| 119 |  | elfzuz | ⊢ ( 𝑛  ∈  ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) )  →  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 )  +  1 ) ) ) | 
						
							| 120 | 81 | peano2nnd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( ( ⌊ ‘ 𝑐 )  +  1 )  ∈  ℕ ) | 
						
							| 121 |  | eluznn | ⊢ ( ( ( ( ⌊ ‘ 𝑐 )  +  1 )  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 )  +  1 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 122 | 120 121 | sylan | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 )  +  1 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 123 |  | simpllr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 )  +  1 ) ) )  →  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) ) | 
						
							| 124 | 83 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 )  +  1 ) ) )  →  𝑐  ∈  ℝ ) | 
						
							| 125 |  | reflcl | ⊢ ( 𝑐  ∈  ℝ  →  ( ⌊ ‘ 𝑐 )  ∈  ℝ ) | 
						
							| 126 |  | peano2re | ⊢ ( ( ⌊ ‘ 𝑐 )  ∈  ℝ  →  ( ( ⌊ ‘ 𝑐 )  +  1 )  ∈  ℝ ) | 
						
							| 127 | 124 125 126 | 3syl | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 )  +  1 ) ) )  →  ( ( ⌊ ‘ 𝑐 )  +  1 )  ∈  ℝ ) | 
						
							| 128 | 122 | nnred | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 )  +  1 ) ) )  →  𝑛  ∈  ℝ ) | 
						
							| 129 |  | fllep1 | ⊢ ( 𝑐  ∈  ℝ  →  𝑐  ≤  ( ( ⌊ ‘ 𝑐 )  +  1 ) ) | 
						
							| 130 | 124 129 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 )  +  1 ) ) )  →  𝑐  ≤  ( ( ⌊ ‘ 𝑐 )  +  1 ) ) | 
						
							| 131 |  | eluzle | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 )  +  1 ) )  →  ( ( ⌊ ‘ 𝑐 )  +  1 )  ≤  𝑛 ) | 
						
							| 132 | 131 | adantl | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 )  +  1 ) ) )  →  ( ( ⌊ ‘ 𝑐 )  +  1 )  ≤  𝑛 ) | 
						
							| 133 | 124 127 128 130 132 | letrd | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 )  +  1 ) ) )  →  𝑐  ≤  𝑛 ) | 
						
							| 134 |  | nfv | ⊢ Ⅎ 𝑘 𝑐  ≤  𝑛 | 
						
							| 135 |  | nfcv | ⊢ Ⅎ 𝑘 abs | 
						
							| 136 | 135 13 | nffv | ⊢ Ⅎ 𝑘 ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 ) | 
						
							| 137 |  | nfcv | ⊢ Ⅎ 𝑘  ≤ | 
						
							| 138 |  | nfcv | ⊢ Ⅎ 𝑘 𝑚 | 
						
							| 139 | 136 137 138 | nfbr | ⊢ Ⅎ 𝑘 ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  ≤  𝑚 | 
						
							| 140 | 134 139 | nfim | ⊢ Ⅎ 𝑘 ( 𝑐  ≤  𝑛  →  ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  ≤  𝑚 ) | 
						
							| 141 |  | breq2 | ⊢ ( 𝑘  =  𝑛  →  ( 𝑐  ≤  𝑘  ↔  𝑐  ≤  𝑛 ) ) | 
						
							| 142 | 11 | fveq2d | ⊢ ( 𝑘  =  𝑛  →  ( abs ‘ 𝐴 )  =  ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 ) ) | 
						
							| 143 | 142 | breq1d | ⊢ ( 𝑘  =  𝑛  →  ( ( abs ‘ 𝐴 )  ≤  𝑚  ↔  ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  ≤  𝑚 ) ) | 
						
							| 144 | 141 143 | imbi12d | ⊢ ( 𝑘  =  𝑛  →  ( ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 )  ↔  ( 𝑐  ≤  𝑛  →  ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  ≤  𝑚 ) ) ) | 
						
							| 145 | 140 144 | rspc | ⊢ ( 𝑛  ∈  ℕ  →  ( ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 )  →  ( 𝑐  ≤  𝑛  →  ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  ≤  𝑚 ) ) ) | 
						
							| 146 | 122 123 133 145 | syl3c | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 )  +  1 ) ) )  →  ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  ≤  𝑚 ) | 
						
							| 147 | 119 146 | sylan2 | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  ≤  𝑚 ) | 
						
							| 148 | 77 97 118 147 | fsumle | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  ≤  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) ) 𝑚 ) | 
						
							| 149 | 71 | recnd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  𝑚  ∈  ℂ ) | 
						
							| 150 |  | fsumconst | ⊢ ( ( ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) )  ∈  Fin  ∧  𝑚  ∈  ℂ )  →  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) ) 𝑚  =  ( ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) ) )  ·  𝑚 ) ) | 
						
							| 151 | 77 149 150 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) ) 𝑚  =  ( ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) ) )  ·  𝑚 ) ) | 
						
							| 152 | 148 151 | breqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  ≤  ( ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) ) )  ·  𝑚 ) ) | 
						
							| 153 |  | biidd | ⊢ ( 𝑛  =  ( ( ⌊ ‘ 𝑐 )  +  1 )  →  ( 0  ≤  𝑚  ↔  0  ≤  𝑚 ) ) | 
						
							| 154 |  | 0red | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 )  +  1 ) ) )  →  0  ∈  ℝ ) | 
						
							| 155 | 47 30 | mpan9 | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  𝑛  ∈  ℕ )  →  ⦋ 𝑛  /  𝑘 ⦌ 𝐴  ∈  ℂ ) | 
						
							| 156 | 155 | adantlr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  ∧  𝑛  ∈  ℕ )  →  ⦋ 𝑛  /  𝑘 ⦌ 𝐴  ∈  ℂ ) | 
						
							| 157 | 122 156 | syldan | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 )  +  1 ) ) )  →  ⦋ 𝑛  /  𝑘 ⦌ 𝐴  ∈  ℂ ) | 
						
							| 158 | 157 | abscld | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 )  +  1 ) ) )  →  ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  ∈  ℝ ) | 
						
							| 159 | 71 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 )  +  1 ) ) )  →  𝑚  ∈  ℝ ) | 
						
							| 160 | 157 | absge0d | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 )  +  1 ) ) )  →  0  ≤  ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 ) ) | 
						
							| 161 | 154 158 159 160 146 | letrd | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 )  +  1 ) ) )  →  0  ≤  𝑚 ) | 
						
							| 162 | 161 | ralrimiva | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ∀ 𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 )  +  1 ) ) 0  ≤  𝑚 ) | 
						
							| 163 | 120 | nnzd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( ( ⌊ ‘ 𝑐 )  +  1 )  ∈  ℤ ) | 
						
							| 164 |  | uzid | ⊢ ( ( ( ⌊ ‘ 𝑐 )  +  1 )  ∈  ℤ  →  ( ( ⌊ ‘ 𝑐 )  +  1 )  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 )  +  1 ) ) ) | 
						
							| 165 | 163 164 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( ( ⌊ ‘ 𝑐 )  +  1 )  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 )  +  1 ) ) ) | 
						
							| 166 | 153 162 165 | rspcdva | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  0  ≤  𝑚 ) | 
						
							| 167 |  | reflcl | ⊢ ( 𝑥  ∈  ℝ  →  ( ⌊ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 168 | 69 167 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( ⌊ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 169 |  | ssdomg | ⊢ ( ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∈  Fin  →  ( ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) )  ⊆  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) )  ≼  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ) | 
						
							| 170 | 64 93 169 | sylc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) )  ≼  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) | 
						
							| 171 |  | hashdomi | ⊢ ( ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) )  ≼  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) ) )  ≤  ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ) | 
						
							| 172 | 170 171 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) ) )  ≤  ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ) | 
						
							| 173 |  | flge0nn0 | ⊢ ( ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 )  →  ( ⌊ ‘ 𝑥 )  ∈  ℕ0 ) | 
						
							| 174 |  | hashfz1 | ⊢ ( ( ⌊ ‘ 𝑥 )  ∈  ℕ0  →  ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  =  ( ⌊ ‘ 𝑥 ) ) | 
						
							| 175 | 57 173 174 | 3syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  =  ( ⌊ ‘ 𝑥 ) ) | 
						
							| 176 | 172 175 | breqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) ) )  ≤  ( ⌊ ‘ 𝑥 ) ) | 
						
							| 177 |  | flle | ⊢ ( 𝑥  ∈  ℝ  →  ( ⌊ ‘ 𝑥 )  ≤  𝑥 ) | 
						
							| 178 | 69 177 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( ⌊ ‘ 𝑥 )  ≤  𝑥 ) | 
						
							| 179 | 116 168 69 176 178 | letrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) ) )  ≤  𝑥 ) | 
						
							| 180 | 116 69 71 166 179 | lemul1ad | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) ) )  ·  𝑚 )  ≤  ( 𝑥  ·  𝑚 ) ) | 
						
							| 181 | 98 117 100 152 180 | letrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  ≤  ( 𝑥  ·  𝑚 ) ) | 
						
							| 182 | 70 98 99 100 113 181 | le2addd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  +  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 ) )  ≤  ( ( 𝑥  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 ) )  +  ( 𝑥  ·  𝑚 ) ) ) | 
						
							| 183 |  | ltp1 | ⊢ ( ( ⌊ ‘ 𝑐 )  ∈  ℝ  →  ( ⌊ ‘ 𝑐 )  <  ( ( ⌊ ‘ 𝑐 )  +  1 ) ) | 
						
							| 184 |  | fzdisj | ⊢ ( ( ⌊ ‘ 𝑐 )  <  ( ( ⌊ ‘ 𝑐 )  +  1 )  →  ( ( 1 ... ( ⌊ ‘ 𝑐 ) )  ∩  ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) ) )  =  ∅ ) | 
						
							| 185 | 82 183 184 | 3syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( ( 1 ... ( ⌊ ‘ 𝑐 ) )  ∩  ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) ) )  =  ∅ ) | 
						
							| 186 | 96 | recnd | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  ∈  ℂ ) | 
						
							| 187 | 185 92 64 186 | fsumsplit | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  +  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑐 )  +  1 ) ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 ) ) ) | 
						
							| 188 | 36 | adantrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  𝑥  ∈  ℂ ) | 
						
							| 189 | 188 101 149 | adddid | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( 𝑥  ·  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  +  𝑚 ) )  =  ( ( 𝑥  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 ) )  +  ( 𝑥  ·  𝑚 ) ) ) | 
						
							| 190 | 182 187 189 | 3brtr4d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  ≤  ( 𝑥  ·  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  +  𝑚 ) ) ) | 
						
							| 191 | 63 68 73 76 190 | letrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( abs ‘ Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 )  ≤  ( 𝑥  ·  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  +  𝑚 ) ) ) | 
						
							| 192 |  | rpregt0 | ⊢ ( 𝑥  ∈  ℝ+  →  ( 𝑥  ∈  ℝ  ∧  0  <  𝑥 ) ) | 
						
							| 193 | 192 | ad2antrl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( 𝑥  ∈  ℝ  ∧  0  <  𝑥 ) ) | 
						
							| 194 |  | ledivmul | ⊢ ( ( ( abs ‘ Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 )  ∈  ℝ  ∧  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  +  𝑚 )  ∈  ℝ  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  𝑥 ) )  →  ( ( ( abs ‘ Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 )  /  𝑥 )  ≤  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  +  𝑚 )  ↔  ( abs ‘ Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 )  ≤  ( 𝑥  ·  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  +  𝑚 ) ) ) ) | 
						
							| 195 | 63 72 193 194 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( ( ( abs ‘ Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 )  /  𝑥 )  ≤  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  +  𝑚 )  ↔  ( abs ‘ Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 )  ≤  ( 𝑥  ·  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  +  𝑚 ) ) ) ) | 
						
							| 196 | 191 195 | mpbird | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( ( abs ‘ Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 )  /  𝑥 )  ≤  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  +  𝑚 ) ) | 
						
							| 197 | 61 196 | eqbrtrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑐  ≤  𝑥 ) )  →  ( abs ‘ ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴  /  𝑥 ) )  ≤  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛  /  𝑘 ⦌ 𝐴 )  +  𝑚 ) ) | 
						
							| 198 | 10 39 45 53 197 | elo1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  ∧  ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 ) )  →  ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴  /  𝑥 ) )  ∈  𝑂(1) ) | 
						
							| 199 | 198 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑐  ∈  ( 1 [,) +∞ )  ∧  𝑚  ∈  ℝ ) )  →  ( ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 )  →  ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴  /  𝑥 ) )  ∈  𝑂(1) ) ) | 
						
							| 200 | 199 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑐  ∈  ( 1 [,) +∞ ) ∃ 𝑚  ∈  ℝ ∀ 𝑘  ∈  ℕ ( 𝑐  ≤  𝑘  →  ( abs ‘ 𝐴 )  ≤  𝑚 )  →  ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴  /  𝑥 ) )  ∈  𝑂(1) ) ) | 
						
							| 201 | 8 200 | mpd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑘  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴  /  𝑥 ) )  ∈  𝑂(1) ) |