Metamath Proof Explorer


Theorem o1le

Description: Transfer eventual boundedness from a larger function to a smaller function. (Contributed by Mario Carneiro, 25-Sep-2014) (Proof shortened by Mario Carneiro, 26-May-2016)

Ref Expression
Hypotheses o1le.1 ( 𝜑𝑀 ∈ ℝ )
o1le.2 ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ 𝑂(1) )
o1le.3 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
o1le.4 ( ( 𝜑𝑥𝐴 ) → 𝐶 ∈ ℂ )
o1le.5 ( ( 𝜑 ∧ ( 𝑥𝐴𝑀𝑥 ) ) → ( abs ‘ 𝐶 ) ≤ ( abs ‘ 𝐵 ) )
Assertion o1le ( 𝜑 → ( 𝑥𝐴𝐶 ) ∈ 𝑂(1) )

Proof

Step Hyp Ref Expression
1 o1le.1 ( 𝜑𝑀 ∈ ℝ )
2 o1le.2 ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ 𝑂(1) )
3 o1le.3 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
4 o1le.4 ( ( 𝜑𝑥𝐴 ) → 𝐶 ∈ ℂ )
5 o1le.5 ( ( 𝜑 ∧ ( 𝑥𝐴𝑀𝑥 ) ) → ( abs ‘ 𝐶 ) ≤ ( abs ‘ 𝐵 ) )
6 3 2 o1mptrcl ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℂ )
7 6 lo1o12 ( 𝜑 → ( ( 𝑥𝐴𝐵 ) ∈ 𝑂(1) ↔ ( 𝑥𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ ≤𝑂(1) ) )
8 2 7 mpbid ( 𝜑 → ( 𝑥𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ ≤𝑂(1) )
9 fvexd ( ( 𝜑𝑥𝐴 ) → ( abs ‘ 𝐵 ) ∈ V )
10 4 abscld ( ( 𝜑𝑥𝐴 ) → ( abs ‘ 𝐶 ) ∈ ℝ )
11 1 8 9 10 5 lo1le ( 𝜑 → ( 𝑥𝐴 ↦ ( abs ‘ 𝐶 ) ) ∈ ≤𝑂(1) )
12 4 lo1o12 ( 𝜑 → ( ( 𝑥𝐴𝐶 ) ∈ 𝑂(1) ↔ ( 𝑥𝐴 ↦ ( abs ‘ 𝐶 ) ) ∈ ≤𝑂(1) ) )
13 11 12 mpbird ( 𝜑 → ( 𝑥𝐴𝐶 ) ∈ 𝑂(1) )