Step |
Hyp |
Ref |
Expression |
1 |
|
o1le.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
2 |
|
o1le.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ) |
3 |
|
o1le.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
4 |
|
o1le.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
5 |
|
o1le.5 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → ( abs ‘ 𝐶 ) ≤ ( abs ‘ 𝐵 ) ) |
6 |
3 2
|
o1mptrcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
7 |
6
|
lo1o12 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ ≤𝑂(1) ) ) |
8 |
2 7
|
mpbid |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ ≤𝑂(1) ) |
9 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐵 ) ∈ V ) |
10 |
4
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐶 ) ∈ ℝ ) |
11 |
1 8 9 10 5
|
lo1le |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐶 ) ) ∈ ≤𝑂(1) ) |
12 |
4
|
lo1o12 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐶 ) ) ∈ ≤𝑂(1) ) ) |
13 |
11 12
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝑂(1) ) |