| Step |
Hyp |
Ref |
Expression |
| 1 |
|
o1lo1.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 2 |
|
o1dm |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) |
| 3 |
2
|
a1i |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) ) |
| 4 |
|
lo1dm |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) |
| 5 |
4
|
adantr |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ∧ ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ ≤𝑂(1) ) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ∧ ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ ≤𝑂(1) ) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) ) |
| 7 |
1
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℝ ) |
| 8 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℝ → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 9 |
7 8
|
syl |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 10 |
9
|
sseq1d |
⊢ ( 𝜑 → ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ↔ 𝐴 ⊆ ℝ ) ) |
| 11 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑚 ∈ ℝ ) → 𝑚 ∈ ℝ ) |
| 12 |
1
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 13 |
12
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 14 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑚 ∈ ℝ ) |
| 15 |
13 14
|
absled |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ 𝐵 ) ≤ 𝑚 ↔ ( - 𝑚 ≤ 𝐵 ∧ 𝐵 ≤ 𝑚 ) ) ) |
| 16 |
|
ancom |
⊢ ( ( - 𝑚 ≤ 𝐵 ∧ 𝐵 ≤ 𝑚 ) ↔ ( 𝐵 ≤ 𝑚 ∧ - 𝑚 ≤ 𝐵 ) ) |
| 17 |
|
lenegcon1 |
⊢ ( ( 𝑚 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( - 𝑚 ≤ 𝐵 ↔ - 𝐵 ≤ 𝑚 ) ) |
| 18 |
14 13 17
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( - 𝑚 ≤ 𝐵 ↔ - 𝐵 ≤ 𝑚 ) ) |
| 19 |
18
|
anbi2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 ≤ 𝑚 ∧ - 𝑚 ≤ 𝐵 ) ↔ ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑚 ) ) ) |
| 20 |
16 19
|
bitrid |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( - 𝑚 ≤ 𝐵 ∧ 𝐵 ≤ 𝑚 ) ↔ ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑚 ) ) ) |
| 21 |
15 20
|
bitrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ 𝐵 ) ≤ 𝑚 ↔ ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑚 ) ) ) |
| 22 |
21
|
imbi2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) ↔ ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑚 ) ) ) ) |
| 23 |
22
|
ralbidva |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑚 ∈ ℝ ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑚 ) ) ) ) |
| 24 |
23
|
rexbidv |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑚 ∈ ℝ ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) ↔ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑚 ) ) ) ) |
| 25 |
24
|
biimpd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑚 ∈ ℝ ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) → ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑚 ) ) ) ) |
| 26 |
|
breq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐵 ≤ 𝑛 ↔ 𝐵 ≤ 𝑚 ) ) |
| 27 |
26
|
anbi1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) ↔ ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑝 ) ) ) |
| 28 |
27
|
imbi2d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) ) ↔ ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑝 ) ) ) ) |
| 29 |
28
|
rexralbidv |
⊢ ( 𝑛 = 𝑚 → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) ) ↔ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑝 ) ) ) ) |
| 30 |
|
breq2 |
⊢ ( 𝑝 = 𝑚 → ( - 𝐵 ≤ 𝑝 ↔ - 𝐵 ≤ 𝑚 ) ) |
| 31 |
30
|
anbi2d |
⊢ ( 𝑝 = 𝑚 → ( ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑝 ) ↔ ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑚 ) ) ) |
| 32 |
31
|
imbi2d |
⊢ ( 𝑝 = 𝑚 → ( ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑝 ) ) ↔ ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑚 ) ) ) ) |
| 33 |
32
|
rexralbidv |
⊢ ( 𝑝 = 𝑚 → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑝 ) ) ↔ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑚 ) ) ) ) |
| 34 |
29 33
|
rspc2ev |
⊢ ( ( 𝑚 ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑚 ) ) ) → ∃ 𝑛 ∈ ℝ ∃ 𝑝 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) ) ) |
| 35 |
34
|
3anidm12 |
⊢ ( ( 𝑚 ∈ ℝ ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑚 ) ) ) → ∃ 𝑛 ∈ ℝ ∃ 𝑝 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) ) ) |
| 36 |
11 25 35
|
syl6an |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑚 ∈ ℝ ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) → ∃ 𝑛 ∈ ℝ ∃ 𝑝 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) ) ) ) |
| 37 |
36
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ∃ 𝑚 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) → ∃ 𝑛 ∈ ℝ ∃ 𝑝 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) ) ) ) |
| 38 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑛 ≤ 𝑝 ) → 𝑝 ∈ ℝ ) |
| 39 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ ¬ 𝑛 ≤ 𝑝 ) → 𝑛 ∈ ℝ ) |
| 40 |
38 39
|
ifclda |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) → if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ∈ ℝ ) |
| 41 |
|
max2 |
⊢ ( ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) → 𝑝 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) |
| 42 |
41
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑝 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) |
| 43 |
12
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 44 |
43
|
renegcld |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ∈ ℝ ) |
| 45 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑝 ∈ ℝ ) |
| 46 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑛 ∈ ℝ ) |
| 47 |
45 46
|
ifcld |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ∈ ℝ ) |
| 48 |
|
letr |
⊢ ( ( - 𝐵 ∈ ℝ ∧ 𝑝 ∈ ℝ ∧ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ∈ ℝ ) → ( ( - 𝐵 ≤ 𝑝 ∧ 𝑝 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) → - 𝐵 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) |
| 49 |
44 45 47 48
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( - 𝐵 ≤ 𝑝 ∧ 𝑝 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) → - 𝐵 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) |
| 50 |
42 49
|
mpan2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐵 ≤ 𝑝 → - 𝐵 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) |
| 51 |
|
lenegcon1 |
⊢ ( ( 𝐵 ∈ ℝ ∧ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ∈ ℝ ) → ( - 𝐵 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ↔ - if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ≤ 𝐵 ) ) |
| 52 |
43 47 51
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐵 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ↔ - if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ≤ 𝐵 ) ) |
| 53 |
50 52
|
sylibd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐵 ≤ 𝑝 → - if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ≤ 𝐵 ) ) |
| 54 |
|
max1 |
⊢ ( ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) → 𝑛 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) |
| 55 |
54
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑛 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) |
| 56 |
|
letr |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ∈ ℝ ) → ( ( 𝐵 ≤ 𝑛 ∧ 𝑛 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) → 𝐵 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) |
| 57 |
43 46 47 56
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 ≤ 𝑛 ∧ 𝑛 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) → 𝐵 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) |
| 58 |
55 57
|
mpan2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ≤ 𝑛 → 𝐵 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) |
| 59 |
53 58
|
anim12d |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( - 𝐵 ≤ 𝑝 ∧ 𝐵 ≤ 𝑛 ) → ( - if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ≤ 𝐵 ∧ 𝐵 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) ) |
| 60 |
59
|
ancomsd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) → ( - if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ≤ 𝐵 ∧ 𝐵 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) ) |
| 61 |
43 47
|
absled |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ 𝐵 ) ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ↔ ( - if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ≤ 𝐵 ∧ 𝐵 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) ) |
| 62 |
60 61
|
sylibrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) → ( abs ‘ 𝐵 ) ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) |
| 63 |
62
|
imim2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) ) → ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) ) |
| 64 |
63
|
ralimdva |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) ) |
| 65 |
64
|
reximdv |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) ) → ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) ) |
| 66 |
|
breq2 |
⊢ ( 𝑚 = if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) → ( ( abs ‘ 𝐵 ) ≤ 𝑚 ↔ ( abs ‘ 𝐵 ) ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) |
| 67 |
66
|
imbi2d |
⊢ ( 𝑚 = if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) → ( ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) ↔ ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) ) |
| 68 |
67
|
rexralbidv |
⊢ ( 𝑚 = if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) ↔ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) ) |
| 69 |
68
|
rspcev |
⊢ ( ( if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ∈ ℝ ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) → ∃ 𝑚 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) ) |
| 70 |
40 65 69
|
syl6an |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) ) → ∃ 𝑚 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) ) ) |
| 71 |
70
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ∃ 𝑛 ∈ ℝ ∃ 𝑝 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) ) → ∃ 𝑚 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) ) ) |
| 72 |
37 71
|
impbid |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ∃ 𝑚 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) ↔ ∃ 𝑛 ∈ ℝ ∃ 𝑝 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) ) ) ) |
| 73 |
|
rexanre |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) ) ↔ ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → - 𝐵 ≤ 𝑝 ) ) ) ) |
| 74 |
73
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) ) ↔ ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → - 𝐵 ≤ 𝑝 ) ) ) ) |
| 75 |
74
|
2rexbidv |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ∃ 𝑛 ∈ ℝ ∃ 𝑝 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) ) ↔ ∃ 𝑛 ∈ ℝ ∃ 𝑝 ∈ ℝ ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → - 𝐵 ≤ 𝑝 ) ) ) ) |
| 76 |
72 75
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ∃ 𝑚 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) ↔ ∃ 𝑛 ∈ ℝ ∃ 𝑝 ∈ ℝ ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → - 𝐵 ≤ 𝑝 ) ) ) ) |
| 77 |
|
reeanv |
⊢ ( ∃ 𝑛 ∈ ℝ ∃ 𝑝 ∈ ℝ ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → - 𝐵 ≤ 𝑝 ) ) ↔ ( ∃ 𝑛 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ∧ ∃ 𝑝 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → - 𝐵 ≤ 𝑝 ) ) ) |
| 78 |
76 77
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ∃ 𝑚 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) ↔ ( ∃ 𝑛 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ∧ ∃ 𝑝 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → - 𝐵 ≤ 𝑝 ) ) ) ) |
| 79 |
|
rexcom |
⊢ ( ∃ 𝑐 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) ↔ ∃ 𝑚 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) ) |
| 80 |
|
rexcom |
⊢ ( ∃ 𝑐 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ↔ ∃ 𝑛 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ) |
| 81 |
|
rexcom |
⊢ ( ∃ 𝑐 ∈ ℝ ∃ 𝑝 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → - 𝐵 ≤ 𝑝 ) ↔ ∃ 𝑝 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → - 𝐵 ≤ 𝑝 ) ) |
| 82 |
80 81
|
anbi12i |
⊢ ( ( ∃ 𝑐 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ∧ ∃ 𝑐 ∈ ℝ ∃ 𝑝 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → - 𝐵 ≤ 𝑝 ) ) ↔ ( ∃ 𝑛 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ∧ ∃ 𝑝 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → - 𝐵 ≤ 𝑝 ) ) ) |
| 83 |
78 79 82
|
3bitr4g |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ∃ 𝑐 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) ↔ ( ∃ 𝑐 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ∧ ∃ 𝑐 ∈ ℝ ∃ 𝑝 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → - 𝐵 ≤ 𝑝 ) ) ) ) |
| 84 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → 𝐴 ⊆ ℝ ) |
| 85 |
12
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 86 |
84 85
|
elo1mpt |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ∃ 𝑐 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) ) ) |
| 87 |
84 12
|
ello1mpt |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ↔ ∃ 𝑐 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ) ) |
| 88 |
12
|
renegcld |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ∈ ℝ ) |
| 89 |
84 88
|
ello1mpt |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ ≤𝑂(1) ↔ ∃ 𝑐 ∈ ℝ ∃ 𝑝 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → - 𝐵 ≤ 𝑝 ) ) ) |
| 90 |
87 89
|
anbi12d |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ∧ ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ ≤𝑂(1) ) ↔ ( ∃ 𝑐 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ∧ ∃ 𝑐 ∈ ℝ ∃ 𝑝 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → - 𝐵 ≤ 𝑝 ) ) ) ) |
| 91 |
83 86 90
|
3bitr4d |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ∧ ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ ≤𝑂(1) ) ) ) |
| 92 |
91
|
ex |
⊢ ( 𝜑 → ( 𝐴 ⊆ ℝ → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ∧ ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ ≤𝑂(1) ) ) ) ) |
| 93 |
10 92
|
sylbid |
⊢ ( 𝜑 → ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ∧ ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ ≤𝑂(1) ) ) ) ) |
| 94 |
3 6 93
|
pm5.21ndd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ∧ ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ ≤𝑂(1) ) ) ) |