Metamath Proof Explorer


Theorem o1lo12

Description: A lower bounded real function is eventually bounded iff it is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016)

Ref Expression
Hypotheses o1lo1.1 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
o1lo12.2 ( 𝜑𝑀 ∈ ℝ )
o1lo12.3 ( ( 𝜑𝑥𝐴 ) → 𝑀𝐵 )
Assertion o1lo12 ( 𝜑 → ( ( 𝑥𝐴𝐵 ) ∈ 𝑂(1) ↔ ( 𝑥𝐴𝐵 ) ∈ ≤𝑂(1) ) )

Proof

Step Hyp Ref Expression
1 o1lo1.1 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
2 o1lo12.2 ( 𝜑𝑀 ∈ ℝ )
3 o1lo12.3 ( ( 𝜑𝑥𝐴 ) → 𝑀𝐵 )
4 o1dm ( ( 𝑥𝐴𝐵 ) ∈ 𝑂(1) → dom ( 𝑥𝐴𝐵 ) ⊆ ℝ )
5 4 a1i ( 𝜑 → ( ( 𝑥𝐴𝐵 ) ∈ 𝑂(1) → dom ( 𝑥𝐴𝐵 ) ⊆ ℝ ) )
6 lo1dm ( ( 𝑥𝐴𝐵 ) ∈ ≤𝑂(1) → dom ( 𝑥𝐴𝐵 ) ⊆ ℝ )
7 6 a1i ( 𝜑 → ( ( 𝑥𝐴𝐵 ) ∈ ≤𝑂(1) → dom ( 𝑥𝐴𝐵 ) ⊆ ℝ ) )
8 1 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 𝐵 ∈ ℝ )
9 dmmptg ( ∀ 𝑥𝐴 𝐵 ∈ ℝ → dom ( 𝑥𝐴𝐵 ) = 𝐴 )
10 8 9 syl ( 𝜑 → dom ( 𝑥𝐴𝐵 ) = 𝐴 )
11 10 sseq1d ( 𝜑 → ( dom ( 𝑥𝐴𝐵 ) ⊆ ℝ ↔ 𝐴 ⊆ ℝ ) )
12 simpr ( ( 𝜑𝐴 ⊆ ℝ ) → 𝐴 ⊆ ℝ )
13 1 renegcld ( ( 𝜑𝑥𝐴 ) → - 𝐵 ∈ ℝ )
14 13 adantlr ( ( ( 𝜑𝐴 ⊆ ℝ ) ∧ 𝑥𝐴 ) → - 𝐵 ∈ ℝ )
15 2 adantr ( ( 𝜑𝐴 ⊆ ℝ ) → 𝑀 ∈ ℝ )
16 15 renegcld ( ( 𝜑𝐴 ⊆ ℝ ) → - 𝑀 ∈ ℝ )
17 2 adantr ( ( 𝜑𝑥𝐴 ) → 𝑀 ∈ ℝ )
18 17 1 lenegd ( ( 𝜑𝑥𝐴 ) → ( 𝑀𝐵 ↔ - 𝐵 ≤ - 𝑀 ) )
19 3 18 mpbid ( ( 𝜑𝑥𝐴 ) → - 𝐵 ≤ - 𝑀 )
20 19 ad2ant2r ( ( ( 𝜑𝐴 ⊆ ℝ ) ∧ ( 𝑥𝐴𝑀𝑥 ) ) → - 𝐵 ≤ - 𝑀 )
21 12 14 15 16 20 ello1d ( ( 𝜑𝐴 ⊆ ℝ ) → ( 𝑥𝐴 ↦ - 𝐵 ) ∈ ≤𝑂(1) )
22 1 o1lo1 ( 𝜑 → ( ( 𝑥𝐴𝐵 ) ∈ 𝑂(1) ↔ ( ( 𝑥𝐴𝐵 ) ∈ ≤𝑂(1) ∧ ( 𝑥𝐴 ↦ - 𝐵 ) ∈ ≤𝑂(1) ) ) )
23 22 rbaibd ( ( 𝜑 ∧ ( 𝑥𝐴 ↦ - 𝐵 ) ∈ ≤𝑂(1) ) → ( ( 𝑥𝐴𝐵 ) ∈ 𝑂(1) ↔ ( 𝑥𝐴𝐵 ) ∈ ≤𝑂(1) ) )
24 21 23 syldan ( ( 𝜑𝐴 ⊆ ℝ ) → ( ( 𝑥𝐴𝐵 ) ∈ 𝑂(1) ↔ ( 𝑥𝐴𝐵 ) ∈ ≤𝑂(1) ) )
25 24 ex ( 𝜑 → ( 𝐴 ⊆ ℝ → ( ( 𝑥𝐴𝐵 ) ∈ 𝑂(1) ↔ ( 𝑥𝐴𝐵 ) ∈ ≤𝑂(1) ) ) )
26 11 25 sylbid ( 𝜑 → ( dom ( 𝑥𝐴𝐵 ) ⊆ ℝ → ( ( 𝑥𝐴𝐵 ) ∈ 𝑂(1) ↔ ( 𝑥𝐴𝐵 ) ∈ ≤𝑂(1) ) ) )
27 5 7 26 pm5.21ndd ( 𝜑 → ( ( 𝑥𝐴𝐵 ) ∈ 𝑂(1) ↔ ( 𝑥𝐴𝐵 ) ∈ ≤𝑂(1) ) )