| Step |
Hyp |
Ref |
Expression |
| 1 |
|
o1lo1.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 2 |
|
o1lo12.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 3 |
|
o1lo12.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑀 ≤ 𝐵 ) |
| 4 |
|
o1dm |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) |
| 5 |
4
|
a1i |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) ) |
| 6 |
|
lo1dm |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) ) |
| 8 |
1
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℝ ) |
| 9 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℝ → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 10 |
8 9
|
syl |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 11 |
10
|
sseq1d |
⊢ ( 𝜑 → ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ↔ 𝐴 ⊆ ℝ ) ) |
| 12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → 𝐴 ⊆ ℝ ) |
| 13 |
1
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ∈ ℝ ) |
| 14 |
13
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ∈ ℝ ) |
| 15 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → 𝑀 ∈ ℝ ) |
| 16 |
15
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → - 𝑀 ∈ ℝ ) |
| 17 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑀 ∈ ℝ ) |
| 18 |
17 1
|
lenegd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑀 ≤ 𝐵 ↔ - 𝐵 ≤ - 𝑀 ) ) |
| 19 |
3 18
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ≤ - 𝑀 ) |
| 20 |
19
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → - 𝐵 ≤ - 𝑀 ) |
| 21 |
12 14 15 16 20
|
ello1d |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ ≤𝑂(1) ) |
| 22 |
1
|
o1lo1 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ∧ ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ ≤𝑂(1) ) ) ) |
| 23 |
22
|
rbaibd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ ≤𝑂(1) ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ) ) |
| 24 |
21 23
|
syldan |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ) ) |
| 25 |
24
|
ex |
⊢ ( 𝜑 → ( 𝐴 ⊆ ℝ → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ) ) ) |
| 26 |
11 25
|
sylbid |
⊢ ( 𝜑 → ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ) ) ) |
| 27 |
5 7 26
|
pm5.21ndd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ) ) |