| Step |
Hyp |
Ref |
Expression |
| 1 |
|
remulcl |
⊢ ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( 𝑚 · 𝑛 ) ∈ ℝ ) |
| 2 |
|
mulcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
| 3 |
|
simp2l |
⊢ ( ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) ) → 𝑥 ∈ ℂ ) |
| 4 |
|
simp2r |
⊢ ( ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) ) → 𝑦 ∈ ℂ ) |
| 5 |
3 4
|
absmuld |
⊢ ( ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) ) → ( abs ‘ ( 𝑥 · 𝑦 ) ) = ( ( abs ‘ 𝑥 ) · ( abs ‘ 𝑦 ) ) ) |
| 6 |
3
|
abscld |
⊢ ( ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) ) → ( abs ‘ 𝑥 ) ∈ ℝ ) |
| 7 |
|
simp1l |
⊢ ( ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) ) → 𝑚 ∈ ℝ ) |
| 8 |
4
|
abscld |
⊢ ( ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) ) → ( abs ‘ 𝑦 ) ∈ ℝ ) |
| 9 |
|
simp1r |
⊢ ( ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) ) → 𝑛 ∈ ℝ ) |
| 10 |
3
|
absge0d |
⊢ ( ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) ) → 0 ≤ ( abs ‘ 𝑥 ) ) |
| 11 |
4
|
absge0d |
⊢ ( ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) ) → 0 ≤ ( abs ‘ 𝑦 ) ) |
| 12 |
|
simp3l |
⊢ ( ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) ) → ( abs ‘ 𝑥 ) ≤ 𝑚 ) |
| 13 |
|
simp3r |
⊢ ( ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) ) → ( abs ‘ 𝑦 ) ≤ 𝑛 ) |
| 14 |
6 7 8 9 10 11 12 13
|
lemul12ad |
⊢ ( ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) ) → ( ( abs ‘ 𝑥 ) · ( abs ‘ 𝑦 ) ) ≤ ( 𝑚 · 𝑛 ) ) |
| 15 |
5 14
|
eqbrtrd |
⊢ ( ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) ) → ( abs ‘ ( 𝑥 · 𝑦 ) ) ≤ ( 𝑚 · 𝑛 ) ) |
| 16 |
15
|
3expia |
⊢ ( ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) → ( abs ‘ ( 𝑥 · 𝑦 ) ) ≤ ( 𝑚 · 𝑛 ) ) ) |
| 17 |
1 2 16
|
o1of2 |
⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) → ( 𝐹 ∘f · 𝐺 ) ∈ 𝑂(1) ) |