Step |
Hyp |
Ref |
Expression |
1 |
|
o1of2.1 |
⊢ ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → 𝑀 ∈ ℝ ) |
2 |
|
o1of2.2 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 𝑅 𝑦 ) ∈ ℂ ) |
3 |
|
o1of2.3 |
⊢ ( ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) → ( abs ‘ ( 𝑥 𝑅 𝑦 ) ) ≤ 𝑀 ) ) |
4 |
|
o1f |
⊢ ( 𝐹 ∈ 𝑂(1) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
5 |
|
o1bdd |
⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐹 : dom 𝐹 ⟶ ℂ ) → ∃ 𝑎 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ) |
6 |
4 5
|
mpdan |
⊢ ( 𝐹 ∈ 𝑂(1) → ∃ 𝑎 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) → ∃ 𝑎 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ) |
8 |
|
o1f |
⊢ ( 𝐺 ∈ 𝑂(1) → 𝐺 : dom 𝐺 ⟶ ℂ ) |
9 |
|
o1bdd |
⊢ ( ( 𝐺 ∈ 𝑂(1) ∧ 𝐺 : dom 𝐺 ⟶ ℂ ) → ∃ 𝑏 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ dom 𝐺 ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) |
10 |
8 9
|
mpdan |
⊢ ( 𝐺 ∈ 𝑂(1) → ∃ 𝑏 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ dom 𝐺 ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) → ∃ 𝑏 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ dom 𝐺 ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) |
12 |
|
reeanv |
⊢ ( ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ ( ∃ 𝑚 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ dom 𝐺 ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ↔ ( ∃ 𝑎 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ∃ 𝑏 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ dom 𝐺 ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ) |
13 |
|
reeanv |
⊢ ( ∃ 𝑚 ∈ ℝ ∃ 𝑛 ∈ ℝ ( ∀ 𝑧 ∈ dom 𝐹 ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ∀ 𝑧 ∈ dom 𝐺 ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ↔ ( ∃ 𝑚 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ dom 𝐺 ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ) |
14 |
|
inss1 |
⊢ ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐹 |
15 |
|
ssralv |
⊢ ( ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐹 → ( ∀ 𝑧 ∈ dom 𝐹 ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) → ∀ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ) ) |
16 |
14 15
|
ax-mp |
⊢ ( ∀ 𝑧 ∈ dom 𝐹 ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) → ∀ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ) |
17 |
|
inss2 |
⊢ ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐺 |
18 |
|
ssralv |
⊢ ( ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐺 → ( ∀ 𝑧 ∈ dom 𝐺 ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) → ∀ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ) |
19 |
17 18
|
ax-mp |
⊢ ( ∀ 𝑧 ∈ dom 𝐺 ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) → ∀ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) |
20 |
16 19
|
anim12i |
⊢ ( ( ∀ 𝑧 ∈ dom 𝐹 ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ∀ 𝑧 ∈ dom 𝐺 ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ( ∀ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ∀ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ) |
21 |
|
r19.26 |
⊢ ( ∀ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ↔ ( ∀ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ∀ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ) |
22 |
20 21
|
sylibr |
⊢ ( ( ∀ 𝑧 ∈ dom 𝐹 ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ∀ 𝑧 ∈ dom 𝐺 ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ∀ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ) |
23 |
|
anim12 |
⊢ ( ( ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ( ( 𝑎 ≤ 𝑧 ∧ 𝑏 ≤ 𝑧 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ∧ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ) |
24 |
|
simplrl |
⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → 𝑎 ∈ ℝ ) |
25 |
24
|
adantr |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → 𝑎 ∈ ℝ ) |
26 |
|
simplrr |
⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → 𝑏 ∈ ℝ ) |
27 |
26
|
adantr |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → 𝑏 ∈ ℝ ) |
28 |
|
o1dm |
⊢ ( 𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ ) |
29 |
28
|
ad3antrrr |
⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → dom 𝐹 ⊆ ℝ ) |
30 |
14 29
|
sstrid |
⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → ( dom 𝐹 ∩ dom 𝐺 ) ⊆ ℝ ) |
31 |
30
|
sselda |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → 𝑧 ∈ ℝ ) |
32 |
|
maxle |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑧 ↔ ( 𝑎 ≤ 𝑧 ∧ 𝑏 ≤ 𝑧 ) ) ) |
33 |
25 27 31 32
|
syl3anc |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑧 ↔ ( 𝑎 ≤ 𝑧 ∧ 𝑏 ≤ 𝑧 ) ) ) |
34 |
33
|
biimpd |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑧 → ( 𝑎 ≤ 𝑧 ∧ 𝑏 ≤ 𝑧 ) ) ) |
35 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
36 |
14
|
sseli |
⊢ ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) → 𝑧 ∈ dom 𝐹 ) |
37 |
|
ffvelrn |
⊢ ( ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ 𝑧 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
38 |
35 36 37
|
syl2an |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
39 |
8
|
ad3antlr |
⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → 𝐺 : dom 𝐺 ⟶ ℂ ) |
40 |
17
|
sseli |
⊢ ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) → 𝑧 ∈ dom 𝐺 ) |
41 |
|
ffvelrn |
⊢ ( ( 𝐺 : dom 𝐺 ⟶ ℂ ∧ 𝑧 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
42 |
39 40 41
|
syl2an |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
43 |
3
|
ralrimivva |
⊢ ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℂ ( ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) → ( abs ‘ ( 𝑥 𝑅 𝑦 ) ) ≤ 𝑀 ) ) |
44 |
43
|
ad2antlr |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℂ ( ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) → ( abs ‘ ( 𝑥 𝑅 𝑦 ) ) ≤ 𝑀 ) ) |
45 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( abs ‘ 𝑥 ) = ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
46 |
45
|
breq1d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( ( abs ‘ 𝑥 ) ≤ 𝑚 ↔ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ) |
47 |
46
|
anbi1d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) ↔ ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) ) ) |
48 |
|
fvoveq1 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( abs ‘ ( 𝑥 𝑅 𝑦 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) 𝑅 𝑦 ) ) ) |
49 |
48
|
breq1d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( ( abs ‘ ( 𝑥 𝑅 𝑦 ) ) ≤ 𝑀 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) 𝑅 𝑦 ) ) ≤ 𝑀 ) ) |
50 |
47 49
|
imbi12d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( ( ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) → ( abs ‘ ( 𝑥 𝑅 𝑦 ) ) ≤ 𝑀 ) ↔ ( ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) 𝑅 𝑦 ) ) ≤ 𝑀 ) ) ) |
51 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( abs ‘ 𝑦 ) = ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) |
52 |
51
|
breq1d |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( ( abs ‘ 𝑦 ) ≤ 𝑛 ↔ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) |
53 |
52
|
anbi2d |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) ↔ ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ∧ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ) |
54 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( ( 𝐹 ‘ 𝑧 ) 𝑅 𝑦 ) = ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ) |
55 |
54
|
fveq2d |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) 𝑅 𝑦 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ) ) |
56 |
55
|
breq1d |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) 𝑅 𝑦 ) ) ≤ 𝑀 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ) ≤ 𝑀 ) ) |
57 |
53 56
|
imbi12d |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( ( ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) 𝑅 𝑦 ) ) ≤ 𝑀 ) ↔ ( ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ∧ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ) ≤ 𝑀 ) ) ) |
58 |
50 57
|
rspc2va |
⊢ ( ( ( ( 𝐹 ‘ 𝑧 ) ∈ ℂ ∧ ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℂ ( ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) → ( abs ‘ ( 𝑥 𝑅 𝑦 ) ) ≤ 𝑀 ) ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ∧ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ) ≤ 𝑀 ) ) |
59 |
38 42 44 58
|
syl21anc |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ∧ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ) ≤ 𝑀 ) ) |
60 |
35
|
ffnd |
⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → 𝐹 Fn dom 𝐹 ) |
61 |
39
|
ffnd |
⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → 𝐺 Fn dom 𝐺 ) |
62 |
|
reex |
⊢ ℝ ∈ V |
63 |
|
ssexg |
⊢ ( ( dom 𝐹 ⊆ ℝ ∧ ℝ ∈ V ) → dom 𝐹 ∈ V ) |
64 |
29 62 63
|
sylancl |
⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → dom 𝐹 ∈ V ) |
65 |
|
dmexg |
⊢ ( 𝐺 ∈ 𝑂(1) → dom 𝐺 ∈ V ) |
66 |
65
|
ad3antlr |
⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → dom 𝐺 ∈ V ) |
67 |
|
eqid |
⊢ ( dom 𝐹 ∩ dom 𝐺 ) = ( dom 𝐹 ∩ dom 𝐺 ) |
68 |
|
eqidd |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
69 |
|
eqidd |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) |
70 |
60 61 64 66 67 68 69
|
ofval |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( 𝐹 ∘f 𝑅 𝐺 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ) |
71 |
70
|
fveq2d |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( abs ‘ ( ( 𝐹 ∘f 𝑅 𝐺 ) ‘ 𝑧 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ) ) |
72 |
71
|
breq1d |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( abs ‘ ( ( 𝐹 ∘f 𝑅 𝐺 ) ‘ 𝑧 ) ) ≤ 𝑀 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ) ≤ 𝑀 ) ) |
73 |
59 72
|
sylibrd |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ∧ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) → ( abs ‘ ( ( 𝐹 ∘f 𝑅 𝐺 ) ‘ 𝑧 ) ) ≤ 𝑀 ) ) |
74 |
34 73
|
imim12d |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( ( 𝑎 ≤ 𝑧 ∧ 𝑏 ≤ 𝑧 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ∧ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ∘f 𝑅 𝐺 ) ‘ 𝑧 ) ) ≤ 𝑀 ) ) ) |
75 |
23 74
|
syl5 |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ∘f 𝑅 𝐺 ) ‘ 𝑧 ) ) ≤ 𝑀 ) ) ) |
76 |
75
|
ralimdva |
⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → ( ∀ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ∀ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ∘f 𝑅 𝐺 ) ‘ 𝑧 ) ) ≤ 𝑀 ) ) ) |
77 |
2
|
adantl |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 𝑅 𝑦 ) ∈ ℂ ) |
78 |
77 35 39 64 66 67
|
off |
⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → ( 𝐹 ∘f 𝑅 𝐺 ) : ( dom 𝐹 ∩ dom 𝐺 ) ⟶ ℂ ) |
79 |
26 24
|
ifcld |
⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ∈ ℝ ) |
80 |
1
|
adantl |
⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → 𝑀 ∈ ℝ ) |
81 |
|
elo12r |
⊢ ( ( ( ( 𝐹 ∘f 𝑅 𝐺 ) : ( dom 𝐹 ∩ dom 𝐺 ) ⟶ ℂ ∧ ( dom 𝐹 ∩ dom 𝐺 ) ⊆ ℝ ) ∧ ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ∈ ℝ ∧ 𝑀 ∈ ℝ ) ∧ ∀ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ∘f 𝑅 𝐺 ) ‘ 𝑧 ) ) ≤ 𝑀 ) ) → ( 𝐹 ∘f 𝑅 𝐺 ) ∈ 𝑂(1) ) |
82 |
81
|
3expia |
⊢ ( ( ( ( 𝐹 ∘f 𝑅 𝐺 ) : ( dom 𝐹 ∩ dom 𝐺 ) ⟶ ℂ ∧ ( dom 𝐹 ∩ dom 𝐺 ) ⊆ ℝ ) ∧ ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ∈ ℝ ∧ 𝑀 ∈ ℝ ) ) → ( ∀ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ∘f 𝑅 𝐺 ) ‘ 𝑧 ) ) ≤ 𝑀 ) → ( 𝐹 ∘f 𝑅 𝐺 ) ∈ 𝑂(1) ) ) |
83 |
78 30 79 80 82
|
syl22anc |
⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → ( ∀ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ∘f 𝑅 𝐺 ) ‘ 𝑧 ) ) ≤ 𝑀 ) → ( 𝐹 ∘f 𝑅 𝐺 ) ∈ 𝑂(1) ) ) |
84 |
76 83
|
syld |
⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → ( ∀ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ( 𝐹 ∘f 𝑅 𝐺 ) ∈ 𝑂(1) ) ) |
85 |
22 84
|
syl5 |
⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → ( ( ∀ 𝑧 ∈ dom 𝐹 ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ∀ 𝑧 ∈ dom 𝐺 ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ( 𝐹 ∘f 𝑅 𝐺 ) ∈ 𝑂(1) ) ) |
86 |
85
|
rexlimdvva |
⊢ ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) → ( ∃ 𝑚 ∈ ℝ ∃ 𝑛 ∈ ℝ ( ∀ 𝑧 ∈ dom 𝐹 ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ∀ 𝑧 ∈ dom 𝐺 ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ( 𝐹 ∘f 𝑅 𝐺 ) ∈ 𝑂(1) ) ) |
87 |
13 86
|
syl5bir |
⊢ ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) → ( ( ∃ 𝑚 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ dom 𝐺 ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ( 𝐹 ∘f 𝑅 𝐺 ) ∈ 𝑂(1) ) ) |
88 |
87
|
rexlimdvva |
⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) → ( ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ ( ∃ 𝑚 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ dom 𝐺 ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ( 𝐹 ∘f 𝑅 𝐺 ) ∈ 𝑂(1) ) ) |
89 |
12 88
|
syl5bir |
⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) → ( ( ∃ 𝑎 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ∃ 𝑏 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ dom 𝐺 ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ( 𝐹 ∘f 𝑅 𝐺 ) ∈ 𝑂(1) ) ) |
90 |
7 11 89
|
mp2and |
⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) → ( 𝐹 ∘f 𝑅 𝐺 ) ∈ 𝑂(1) ) |