Metamath Proof Explorer


Theorem o1p1e2

Description: 1 + 1 = 2 for ordinal numbers. (Contributed by NM, 18-Feb-2004)

Ref Expression
Assertion o1p1e2 ( 1o +o 1o ) = 2o

Proof

Step Hyp Ref Expression
1 1on 1o ∈ On
2 oa1suc ( 1o ∈ On → ( 1o +o 1o ) = suc 1o )
3 1 2 ax-mp ( 1o +o 1o ) = suc 1o
4 df-2o 2o = suc 1o
5 3 4 eqtr4i ( 1o +o 1o ) = 2o