Step |
Hyp |
Ref |
Expression |
1 |
|
o1f |
⊢ ( 𝐹 ∈ 𝑂(1) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
2 |
1
|
adantr |
⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
3 |
2
|
ffnd |
⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → 𝐹 Fn dom 𝐹 ) |
4 |
|
rlimf |
⊢ ( 𝐺 ⇝𝑟 0 → 𝐺 : dom 𝐺 ⟶ ℂ ) |
5 |
4
|
adantl |
⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → 𝐺 : dom 𝐺 ⟶ ℂ ) |
6 |
5
|
ffnd |
⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → 𝐺 Fn dom 𝐺 ) |
7 |
|
o1dm |
⊢ ( 𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ ) |
8 |
7
|
adantr |
⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → dom 𝐹 ⊆ ℝ ) |
9 |
|
reex |
⊢ ℝ ∈ V |
10 |
|
ssexg |
⊢ ( ( dom 𝐹 ⊆ ℝ ∧ ℝ ∈ V ) → dom 𝐹 ∈ V ) |
11 |
8 9 10
|
sylancl |
⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → dom 𝐹 ∈ V ) |
12 |
|
rlimss |
⊢ ( 𝐺 ⇝𝑟 0 → dom 𝐺 ⊆ ℝ ) |
13 |
12
|
adantl |
⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → dom 𝐺 ⊆ ℝ ) |
14 |
|
ssexg |
⊢ ( ( dom 𝐺 ⊆ ℝ ∧ ℝ ∈ V ) → dom 𝐺 ∈ V ) |
15 |
13 9 14
|
sylancl |
⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → dom 𝐺 ∈ V ) |
16 |
|
eqid |
⊢ ( dom 𝐹 ∩ dom 𝐺 ) = ( dom 𝐹 ∩ dom 𝐺 ) |
17 |
|
eqidd |
⊢ ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
18 |
|
eqidd |
⊢ ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
19 |
3 6 11 15 16 17 18
|
offval |
⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → ( 𝐹 ∘f · 𝐺 ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) |
20 |
|
o1bdd |
⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐹 : dom 𝐹 ⟶ ℂ ) → ∃ 𝑎 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ dom 𝐹 ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ) |
21 |
1 20
|
mpdan |
⊢ ( 𝐹 ∈ 𝑂(1) → ∃ 𝑎 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ dom 𝐹 ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ) |
22 |
21
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑎 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ dom 𝐹 ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ) |
23 |
|
fvexd |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑥 ) ∈ V ) |
24 |
23
|
ralrimiva |
⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) → ∀ 𝑥 ∈ dom 𝐺 ( 𝐺 ‘ 𝑥 ) ∈ V ) |
25 |
|
simplr |
⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) → 𝑦 ∈ ℝ+ ) |
26 |
|
recn |
⊢ ( 𝑚 ∈ ℝ → 𝑚 ∈ ℂ ) |
27 |
26
|
ad2antll |
⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) → 𝑚 ∈ ℂ ) |
28 |
27
|
abscld |
⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) → ( abs ‘ 𝑚 ) ∈ ℝ ) |
29 |
27
|
absge0d |
⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) → 0 ≤ ( abs ‘ 𝑚 ) ) |
30 |
28 29
|
ge0p1rpd |
⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) → ( ( abs ‘ 𝑚 ) + 1 ) ∈ ℝ+ ) |
31 |
25 30
|
rpdivcld |
⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) → ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ∈ ℝ+ ) |
32 |
5
|
feqmptd |
⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → 𝐺 = ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
33 |
|
simpr |
⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → 𝐺 ⇝𝑟 0 ) |
34 |
32 33
|
eqbrtrrd |
⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ⇝𝑟 0 ) |
35 |
34
|
ad2antrr |
⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) → ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ⇝𝑟 0 ) |
36 |
24 31 35
|
rlimi |
⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ dom 𝐺 ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) |
37 |
|
inss1 |
⊢ ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐹 |
38 |
|
ssralv |
⊢ ( ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐹 → ( ∀ 𝑥 ∈ dom 𝐹 ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) → ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ) ) |
39 |
37 38
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ dom 𝐹 ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) → ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ) |
40 |
|
inss2 |
⊢ ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐺 |
41 |
|
ssralv |
⊢ ( ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐺 → ( ∀ 𝑥 ∈ dom 𝐺 ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) → ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) ) |
42 |
40 41
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ dom 𝐺 ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) → ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) |
43 |
39 42
|
anim12i |
⊢ ( ( ∀ 𝑥 ∈ dom 𝐹 ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ∧ ∀ 𝑥 ∈ dom 𝐺 ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) → ( ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ∧ ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) ) |
44 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ∧ ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) ↔ ( ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ∧ ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) ) |
45 |
43 44
|
sylibr |
⊢ ( ( ∀ 𝑥 ∈ dom 𝐹 ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ∧ ∀ 𝑥 ∈ dom 𝐺 ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) → ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ∧ ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) ) |
46 |
|
anim12 |
⊢ ( ( ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ∧ ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) → ( ( 𝑎 ≤ 𝑥 ∧ 𝑏 ≤ 𝑥 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) ) |
47 |
46
|
ralimi |
⊢ ( ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ∧ ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) → ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( ( 𝑎 ≤ 𝑥 ∧ 𝑏 ≤ 𝑥 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) ) |
48 |
45 47
|
syl |
⊢ ( ( ∀ 𝑥 ∈ dom 𝐹 ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ∧ ∀ 𝑥 ∈ dom 𝐺 ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) → ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( ( 𝑎 ≤ 𝑥 ∧ 𝑏 ≤ 𝑥 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) ) |
49 |
|
simplrl |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 𝑎 ∈ ℝ ) |
50 |
|
simprl |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 𝑏 ∈ ℝ ) |
51 |
37 8
|
sstrid |
⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → ( dom 𝐹 ∩ dom 𝐺 ) ⊆ ℝ ) |
52 |
51
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( dom 𝐹 ∩ dom 𝐺 ) ⊆ ℝ ) |
53 |
|
simprr |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) |
54 |
52 53
|
sseldd |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 𝑥 ∈ ℝ ) |
55 |
|
maxle |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑥 ↔ ( 𝑎 ≤ 𝑥 ∧ 𝑏 ≤ 𝑥 ) ) ) |
56 |
49 50 54 55
|
syl3anc |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑥 ↔ ( 𝑎 ≤ 𝑥 ∧ 𝑏 ≤ 𝑥 ) ) ) |
57 |
56
|
biimpd |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑥 → ( 𝑎 ≤ 𝑥 ∧ 𝑏 ≤ 𝑥 ) ) ) |
58 |
5
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 𝐺 : dom 𝐺 ⟶ ℂ ) |
59 |
40
|
sseli |
⊢ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) → 𝑥 ∈ dom 𝐺 ) |
60 |
59
|
ad2antll |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 𝑥 ∈ dom 𝐺 ) |
61 |
58 60
|
ffvelrnd |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
62 |
61
|
subid1d |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( 𝐺 ‘ 𝑥 ) − 0 ) = ( 𝐺 ‘ 𝑥 ) ) |
63 |
62
|
fveq2d |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) = ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
64 |
63
|
breq1d |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ↔ ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) |
65 |
61
|
abscld |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ∈ ℝ ) |
66 |
31
|
adantr |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ∈ ℝ+ ) |
67 |
66
|
rpred |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ∈ ℝ ) |
68 |
|
ltle |
⊢ ( ( ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ∈ ℝ ∧ ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ∈ ℝ ) → ( ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) → ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ≤ ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) |
69 |
65 67 68
|
syl2anc |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) → ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ≤ ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) |
70 |
64 69
|
sylbid |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) → ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ≤ ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) |
71 |
70
|
anim2d |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) → ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ∧ ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ≤ ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) ) |
72 |
2
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
73 |
37
|
sseli |
⊢ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) → 𝑥 ∈ dom 𝐹 ) |
74 |
73
|
ad2antll |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 𝑥 ∈ dom 𝐹 ) |
75 |
72 74
|
ffvelrnd |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
76 |
75
|
abscld |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
77 |
75
|
absge0d |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 0 ≤ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
78 |
76 77
|
jca |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
79 |
|
simplrr |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 𝑚 ∈ ℝ ) |
80 |
61
|
absge0d |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 0 ≤ ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
81 |
65 80
|
jca |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
82 |
|
lemul12a |
⊢ ( ( ( ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ℝ ) ∧ ( ( ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ∈ ℝ ) ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ∧ ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ≤ ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) → ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) · ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ ( 𝑚 · ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) ) |
83 |
78 79 81 67 82
|
syl22anc |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ∧ ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ≤ ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) → ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) · ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ ( 𝑚 · ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) ) |
84 |
75 61
|
absmuld |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) = ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) · ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
85 |
84
|
breq1d |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ≤ ( 𝑚 · ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ↔ ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) · ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ ( 𝑚 · ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) ) |
86 |
79
|
recnd |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 𝑚 ∈ ℂ ) |
87 |
25
|
adantr |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 𝑦 ∈ ℝ+ ) |
88 |
87
|
rpcnd |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 𝑦 ∈ ℂ ) |
89 |
30
|
adantr |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( abs ‘ 𝑚 ) + 1 ) ∈ ℝ+ ) |
90 |
89
|
rpcnd |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( abs ‘ 𝑚 ) + 1 ) ∈ ℂ ) |
91 |
89
|
rpne0d |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( abs ‘ 𝑚 ) + 1 ) ≠ 0 ) |
92 |
86 88 90 91
|
divassd |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( 𝑚 · 𝑦 ) / ( ( abs ‘ 𝑚 ) + 1 ) ) = ( 𝑚 · ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) |
93 |
|
peano2re |
⊢ ( ( abs ‘ 𝑚 ) ∈ ℝ → ( ( abs ‘ 𝑚 ) + 1 ) ∈ ℝ ) |
94 |
28 93
|
syl |
⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) → ( ( abs ‘ 𝑚 ) + 1 ) ∈ ℝ ) |
95 |
94
|
adantr |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( abs ‘ 𝑚 ) + 1 ) ∈ ℝ ) |
96 |
28
|
adantr |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( abs ‘ 𝑚 ) ∈ ℝ ) |
97 |
79
|
leabsd |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 𝑚 ≤ ( abs ‘ 𝑚 ) ) |
98 |
96
|
ltp1d |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( abs ‘ 𝑚 ) < ( ( abs ‘ 𝑚 ) + 1 ) ) |
99 |
79 96 95 97 98
|
lelttrd |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 𝑚 < ( ( abs ‘ 𝑚 ) + 1 ) ) |
100 |
79 95 87 99
|
ltmul1dd |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( 𝑚 · 𝑦 ) < ( ( ( abs ‘ 𝑚 ) + 1 ) · 𝑦 ) ) |
101 |
87
|
rpred |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 𝑦 ∈ ℝ ) |
102 |
79 101
|
remulcld |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( 𝑚 · 𝑦 ) ∈ ℝ ) |
103 |
102 101 89
|
ltdivmuld |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( ( 𝑚 · 𝑦 ) / ( ( abs ‘ 𝑚 ) + 1 ) ) < 𝑦 ↔ ( 𝑚 · 𝑦 ) < ( ( ( abs ‘ 𝑚 ) + 1 ) · 𝑦 ) ) ) |
104 |
100 103
|
mpbird |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( 𝑚 · 𝑦 ) / ( ( abs ‘ 𝑚 ) + 1 ) ) < 𝑦 ) |
105 |
92 104
|
eqbrtrrd |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( 𝑚 · ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) < 𝑦 ) |
106 |
75 61
|
mulcld |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ∈ ℂ ) |
107 |
106
|
abscld |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ∈ ℝ ) |
108 |
79 67
|
remulcld |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( 𝑚 · ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ∈ ℝ ) |
109 |
|
lelttr |
⊢ ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ∈ ℝ ∧ ( 𝑚 · ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ≤ ( 𝑚 · ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ∧ ( 𝑚 · ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) < 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) |
110 |
107 108 101 109
|
syl3anc |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ≤ ( 𝑚 · ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ∧ ( 𝑚 · ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) < 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) |
111 |
105 110
|
mpan2d |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ≤ ( 𝑚 · ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) |
112 |
85 111
|
sylbird |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) · ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ ( 𝑚 · ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) |
113 |
71 83 112
|
3syld |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) |
114 |
57 113
|
imim12d |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( ( 𝑎 ≤ 𝑥 ∧ 𝑏 ≤ 𝑥 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) → ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
115 |
114
|
anassrs |
⊢ ( ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ 𝑏 ∈ ℝ ) ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( ( 𝑎 ≤ 𝑥 ∧ 𝑏 ≤ 𝑥 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) → ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
116 |
115
|
ralimdva |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ 𝑏 ∈ ℝ ) → ( ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( ( 𝑎 ≤ 𝑥 ∧ 𝑏 ≤ 𝑥 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) → ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
117 |
|
simpr |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ 𝑏 ∈ ℝ ) → 𝑏 ∈ ℝ ) |
118 |
|
simplrl |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ 𝑏 ∈ ℝ ) → 𝑎 ∈ ℝ ) |
119 |
117 118
|
ifcld |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ 𝑏 ∈ ℝ ) → if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ∈ ℝ ) |
120 |
116 119
|
jctild |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ 𝑏 ∈ ℝ ) → ( ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( ( 𝑎 ≤ 𝑥 ∧ 𝑏 ≤ 𝑥 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) → ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ∈ ℝ ∧ ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) ) |
121 |
|
breq1 |
⊢ ( 𝑧 = if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) → ( 𝑧 ≤ 𝑥 ↔ if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑥 ) ) |
122 |
121
|
rspceaimv |
⊢ ( ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ∈ ℝ ∧ ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) |
123 |
48 120 122
|
syl56 |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ 𝑏 ∈ ℝ ) → ( ( ∀ 𝑥 ∈ dom 𝐹 ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ∧ ∀ 𝑥 ∈ dom 𝐺 ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
124 |
123
|
expcomd |
⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ 𝑏 ∈ ℝ ) → ( ∀ 𝑥 ∈ dom 𝐺 ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) → ( ∀ 𝑥 ∈ dom 𝐹 ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) ) |
125 |
124
|
rexlimdva |
⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) → ( ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ dom 𝐺 ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) → ( ∀ 𝑥 ∈ dom 𝐹 ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) ) |
126 |
36 125
|
mpd |
⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) → ( ∀ 𝑥 ∈ dom 𝐹 ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
127 |
126
|
rexlimdvva |
⊢ ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) → ( ∃ 𝑎 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ dom 𝐹 ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
128 |
22 127
|
mpd |
⊢ ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) |
129 |
128
|
ralrimiva |
⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) |
130 |
|
ffvelrn |
⊢ ( ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
131 |
2 73 130
|
syl2an |
⊢ ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
132 |
|
ffvelrn |
⊢ ( ( 𝐺 : dom 𝐺 ⟶ ℂ ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
133 |
5 59 132
|
syl2an |
⊢ ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
134 |
131 133
|
mulcld |
⊢ ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ∈ ℂ ) |
135 |
134
|
ralrimiva |
⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ∈ ℂ ) |
136 |
135 51
|
rlim0 |
⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ⇝𝑟 0 ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
137 |
129 136
|
mpbird |
⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ⇝𝑟 0 ) |
138 |
19 137
|
eqbrtrd |
⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → ( 𝐹 ∘f · 𝐺 ) ⇝𝑟 0 ) |