| Step | Hyp | Ref | Expression | 
						
							| 1 |  | o1add2.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑉 ) | 
						
							| 2 |  | o1add2.2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  𝑉 ) | 
						
							| 3 |  | o1add2.3 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝑂(1) ) | 
						
							| 4 |  | o1add2.4 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝑂(1) ) | 
						
							| 5 | 1 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝑉 ) | 
						
							| 6 |  | dmmptg | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝑉  →  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  𝐴 ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝜑  →  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  𝐴 ) | 
						
							| 8 |  | o1dm | ⊢ ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝑂(1)  →  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ⊆  ℝ ) | 
						
							| 9 | 3 8 | syl | ⊢ ( 𝜑  →  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ⊆  ℝ ) | 
						
							| 10 | 7 9 | eqsstrrd | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 11 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 12 | 11 | ssex | ⊢ ( 𝐴  ⊆  ℝ  →  𝐴  ∈  V ) | 
						
							| 13 | 10 12 | syl | ⊢ ( 𝜑  →  𝐴  ∈  V ) | 
						
							| 14 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 15 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐶 )  =  ( 𝑥  ∈  𝐴  ↦  𝐶 ) ) | 
						
							| 16 | 13 1 2 14 15 | offval2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∘f   −  ( 𝑥  ∈  𝐴  ↦  𝐶 ) )  =  ( 𝑥  ∈  𝐴  ↦  ( 𝐵  −  𝐶 ) ) ) | 
						
							| 17 |  | o1sub | ⊢ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝑂(1)  ∧  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝑂(1) )  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∘f   −  ( 𝑥  ∈  𝐴  ↦  𝐶 ) )  ∈  𝑂(1) ) | 
						
							| 18 | 3 4 17 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∘f   −  ( 𝑥  ∈  𝐴  ↦  𝐶 ) )  ∈  𝑂(1) ) | 
						
							| 19 | 16 18 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( 𝐵  −  𝐶 ) )  ∈  𝑂(1) ) |