Metamath Proof Explorer


Theorem o2p2e4

Description: 2 + 2 = 4 for ordinal numbers. Ordinal numbers are modeled as Von Neumann ordinals; see df-suc . For the usual proof using complex numbers, see 2p2e4 . (Contributed by NM, 18-Aug-2021) Avoid ax-rep , from a comment by Sophie. (Revised by SN, 23-Mar-2024)

Ref Expression
Assertion o2p2e4 ( 2o +o 2o ) = 4o

Proof

Step Hyp Ref Expression
1 2on 2o ∈ On
2 df-1o 1o = suc ∅
3 peano1 ∅ ∈ ω
4 peano2 ( ∅ ∈ ω → suc ∅ ∈ ω )
5 3 4 ax-mp suc ∅ ∈ ω
6 2 5 eqeltri 1o ∈ ω
7 onasuc ( ( 2o ∈ On ∧ 1o ∈ ω ) → ( 2o +o suc 1o ) = suc ( 2o +o 1o ) )
8 1 6 7 mp2an ( 2o +o suc 1o ) = suc ( 2o +o 1o )
9 df-2o 2o = suc 1o
10 9 oveq2i ( 2o +o 2o ) = ( 2o +o suc 1o )
11 df-3o 3o = suc 2o
12 oa1suc ( 2o ∈ On → ( 2o +o 1o ) = suc 2o )
13 1 12 ax-mp ( 2o +o 1o ) = suc 2o
14 11 13 eqtr4i 3o = ( 2o +o 1o )
15 suceq ( 3o = ( 2o +o 1o ) → suc 3o = suc ( 2o +o 1o ) )
16 14 15 ax-mp suc 3o = suc ( 2o +o 1o )
17 8 10 16 3eqtr4i ( 2o +o 2o ) = suc 3o
18 df-4o 4o = suc 3o
19 17 18 eqtr4i ( 2o +o 2o ) = 4o