Step |
Hyp |
Ref |
Expression |
1 |
|
2on |
⊢ 2o ∈ On |
2 |
|
1on |
⊢ 1o ∈ On |
3 |
|
oasuc |
⊢ ( ( 2o ∈ On ∧ 1o ∈ On ) → ( 2o +o suc 1o ) = suc ( 2o +o 1o ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( 2o +o suc 1o ) = suc ( 2o +o 1o ) |
5 |
|
df-2o |
⊢ 2o = suc 1o |
6 |
5
|
oveq2i |
⊢ ( 2o +o 2o ) = ( 2o +o suc 1o ) |
7 |
|
df-3o |
⊢ 3o = suc 2o |
8 |
|
oa1suc |
⊢ ( 2o ∈ On → ( 2o +o 1o ) = suc 2o ) |
9 |
1 8
|
ax-mp |
⊢ ( 2o +o 1o ) = suc 2o |
10 |
7 9
|
eqtr4i |
⊢ 3o = ( 2o +o 1o ) |
11 |
|
suceq |
⊢ ( 3o = ( 2o +o 1o ) → suc 3o = suc ( 2o +o 1o ) ) |
12 |
10 11
|
ax-mp |
⊢ suc 3o = suc ( 2o +o 1o ) |
13 |
4 6 12
|
3eqtr4i |
⊢ ( 2o +o 2o ) = suc 3o |
14 |
|
df-4o |
⊢ 4o = suc 3o |
15 |
13 14
|
eqtr4i |
⊢ ( 2o +o 2o ) = 4o |