| Step |
Hyp |
Ref |
Expression |
| 1 |
|
o2timesd.e |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
| 2 |
|
o2timesd.u |
⊢ ( 𝜑 → 1 ∈ 𝐵 ) |
| 3 |
|
o2timesd.i |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( 1 · 𝑥 ) = 𝑥 ) |
| 4 |
|
o2timesd.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 5 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 1 · 𝑥 ) = ( 1 · 𝑋 ) ) |
| 6 |
|
id |
⊢ ( 𝑥 = 𝑋 → 𝑥 = 𝑋 ) |
| 7 |
5 6
|
eqeq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 1 · 𝑥 ) = 𝑥 ↔ ( 1 · 𝑋 ) = 𝑋 ) ) |
| 8 |
7
|
rspcva |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( 1 · 𝑥 ) = 𝑥 ) → ( 1 · 𝑋 ) = 𝑋 ) |
| 9 |
8
|
eqcomd |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( 1 · 𝑥 ) = 𝑥 ) → 𝑋 = ( 1 · 𝑋 ) ) |
| 10 |
4 3 9
|
syl2anc |
⊢ ( 𝜑 → 𝑋 = ( 1 · 𝑋 ) ) |
| 11 |
10 10
|
oveq12d |
⊢ ( 𝜑 → ( 𝑋 + 𝑋 ) = ( ( 1 · 𝑋 ) + ( 1 · 𝑋 ) ) ) |
| 12 |
2 2 4
|
3jca |
⊢ ( 𝜑 → ( 1 ∈ 𝐵 ∧ 1 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) |
| 13 |
|
oveq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 + 𝑦 ) = ( 1 + 𝑦 ) ) |
| 14 |
13
|
oveq1d |
⊢ ( 𝑥 = 1 → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 1 + 𝑦 ) · 𝑧 ) ) |
| 15 |
|
oveq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 · 𝑧 ) = ( 1 · 𝑧 ) ) |
| 16 |
15
|
oveq1d |
⊢ ( 𝑥 = 1 → ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) = ( ( 1 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
| 17 |
14 16
|
eqeq12d |
⊢ ( 𝑥 = 1 → ( ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ↔ ( ( 1 + 𝑦 ) · 𝑧 ) = ( ( 1 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
| 18 |
|
oveq2 |
⊢ ( 𝑦 = 1 → ( 1 + 𝑦 ) = ( 1 + 1 ) ) |
| 19 |
18
|
oveq1d |
⊢ ( 𝑦 = 1 → ( ( 1 + 𝑦 ) · 𝑧 ) = ( ( 1 + 1 ) · 𝑧 ) ) |
| 20 |
|
oveq1 |
⊢ ( 𝑦 = 1 → ( 𝑦 · 𝑧 ) = ( 1 · 𝑧 ) ) |
| 21 |
20
|
oveq2d |
⊢ ( 𝑦 = 1 → ( ( 1 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) = ( ( 1 · 𝑧 ) + ( 1 · 𝑧 ) ) ) |
| 22 |
19 21
|
eqeq12d |
⊢ ( 𝑦 = 1 → ( ( ( 1 + 𝑦 ) · 𝑧 ) = ( ( 1 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ↔ ( ( 1 + 1 ) · 𝑧 ) = ( ( 1 · 𝑧 ) + ( 1 · 𝑧 ) ) ) ) |
| 23 |
|
oveq2 |
⊢ ( 𝑧 = 𝑋 → ( ( 1 + 1 ) · 𝑧 ) = ( ( 1 + 1 ) · 𝑋 ) ) |
| 24 |
|
oveq2 |
⊢ ( 𝑧 = 𝑋 → ( 1 · 𝑧 ) = ( 1 · 𝑋 ) ) |
| 25 |
24 24
|
oveq12d |
⊢ ( 𝑧 = 𝑋 → ( ( 1 · 𝑧 ) + ( 1 · 𝑧 ) ) = ( ( 1 · 𝑋 ) + ( 1 · 𝑋 ) ) ) |
| 26 |
23 25
|
eqeq12d |
⊢ ( 𝑧 = 𝑋 → ( ( ( 1 + 1 ) · 𝑧 ) = ( ( 1 · 𝑧 ) + ( 1 · 𝑧 ) ) ↔ ( ( 1 + 1 ) · 𝑋 ) = ( ( 1 · 𝑋 ) + ( 1 · 𝑋 ) ) ) ) |
| 27 |
17 22 26
|
rspc3v |
⊢ ( ( 1 ∈ 𝐵 ∧ 1 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) → ( ( 1 + 1 ) · 𝑋 ) = ( ( 1 · 𝑋 ) + ( 1 · 𝑋 ) ) ) ) |
| 28 |
12 1 27
|
sylc |
⊢ ( 𝜑 → ( ( 1 + 1 ) · 𝑋 ) = ( ( 1 · 𝑋 ) + ( 1 · 𝑋 ) ) ) |
| 29 |
11 28
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑋 + 𝑋 ) = ( ( 1 + 1 ) · 𝑋 ) ) |