Metamath Proof Explorer


Theorem o2timesd

Description: An element of a ring-like structure plus itself is two times the element. "Two" in such a structure is the sum of the unity element with itself. This (formerly) part of the proof for ringcom depends on the (right) distributivity and the existence of a (left) multiplicative identity only. (Contributed by Gérard Lang, 4-Dec-2014) (Revised by AV, 1-Feb-2025)

Ref Expression
Hypotheses o2timesd.e ( 𝜑 → ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) )
o2timesd.u ( 𝜑1𝐵 )
o2timesd.i ( 𝜑 → ∀ 𝑥𝐵 ( 1 · 𝑥 ) = 𝑥 )
o2timesd.x ( 𝜑𝑋𝐵 )
Assertion o2timesd ( 𝜑 → ( 𝑋 + 𝑋 ) = ( ( 1 + 1 ) · 𝑋 ) )

Proof

Step Hyp Ref Expression
1 o2timesd.e ( 𝜑 → ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) )
2 o2timesd.u ( 𝜑1𝐵 )
3 o2timesd.i ( 𝜑 → ∀ 𝑥𝐵 ( 1 · 𝑥 ) = 𝑥 )
4 o2timesd.x ( 𝜑𝑋𝐵 )
5 oveq2 ( 𝑥 = 𝑋 → ( 1 · 𝑥 ) = ( 1 · 𝑋 ) )
6 id ( 𝑥 = 𝑋𝑥 = 𝑋 )
7 5 6 eqeq12d ( 𝑥 = 𝑋 → ( ( 1 · 𝑥 ) = 𝑥 ↔ ( 1 · 𝑋 ) = 𝑋 ) )
8 7 rspcva ( ( 𝑋𝐵 ∧ ∀ 𝑥𝐵 ( 1 · 𝑥 ) = 𝑥 ) → ( 1 · 𝑋 ) = 𝑋 )
9 8 eqcomd ( ( 𝑋𝐵 ∧ ∀ 𝑥𝐵 ( 1 · 𝑥 ) = 𝑥 ) → 𝑋 = ( 1 · 𝑋 ) )
10 4 3 9 syl2anc ( 𝜑𝑋 = ( 1 · 𝑋 ) )
11 10 10 oveq12d ( 𝜑 → ( 𝑋 + 𝑋 ) = ( ( 1 · 𝑋 ) + ( 1 · 𝑋 ) ) )
12 2 2 4 3jca ( 𝜑 → ( 1𝐵1𝐵𝑋𝐵 ) )
13 oveq1 ( 𝑥 = 1 → ( 𝑥 + 𝑦 ) = ( 1 + 𝑦 ) )
14 13 oveq1d ( 𝑥 = 1 → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 1 + 𝑦 ) · 𝑧 ) )
15 oveq1 ( 𝑥 = 1 → ( 𝑥 · 𝑧 ) = ( 1 · 𝑧 ) )
16 15 oveq1d ( 𝑥 = 1 → ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) = ( ( 1 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) )
17 14 16 eqeq12d ( 𝑥 = 1 → ( ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ↔ ( ( 1 + 𝑦 ) · 𝑧 ) = ( ( 1 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) )
18 oveq2 ( 𝑦 = 1 → ( 1 + 𝑦 ) = ( 1 + 1 ) )
19 18 oveq1d ( 𝑦 = 1 → ( ( 1 + 𝑦 ) · 𝑧 ) = ( ( 1 + 1 ) · 𝑧 ) )
20 oveq1 ( 𝑦 = 1 → ( 𝑦 · 𝑧 ) = ( 1 · 𝑧 ) )
21 20 oveq2d ( 𝑦 = 1 → ( ( 1 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) = ( ( 1 · 𝑧 ) + ( 1 · 𝑧 ) ) )
22 19 21 eqeq12d ( 𝑦 = 1 → ( ( ( 1 + 𝑦 ) · 𝑧 ) = ( ( 1 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ↔ ( ( 1 + 1 ) · 𝑧 ) = ( ( 1 · 𝑧 ) + ( 1 · 𝑧 ) ) ) )
23 oveq2 ( 𝑧 = 𝑋 → ( ( 1 + 1 ) · 𝑧 ) = ( ( 1 + 1 ) · 𝑋 ) )
24 oveq2 ( 𝑧 = 𝑋 → ( 1 · 𝑧 ) = ( 1 · 𝑋 ) )
25 24 24 oveq12d ( 𝑧 = 𝑋 → ( ( 1 · 𝑧 ) + ( 1 · 𝑧 ) ) = ( ( 1 · 𝑋 ) + ( 1 · 𝑋 ) ) )
26 23 25 eqeq12d ( 𝑧 = 𝑋 → ( ( ( 1 + 1 ) · 𝑧 ) = ( ( 1 · 𝑧 ) + ( 1 · 𝑧 ) ) ↔ ( ( 1 + 1 ) · 𝑋 ) = ( ( 1 · 𝑋 ) + ( 1 · 𝑋 ) ) ) )
27 17 22 26 rspc3v ( ( 1𝐵1𝐵𝑋𝐵 ) → ( ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) → ( ( 1 + 1 ) · 𝑋 ) = ( ( 1 · 𝑋 ) + ( 1 · 𝑋 ) ) ) )
28 12 1 27 sylc ( 𝜑 → ( ( 1 + 1 ) · 𝑋 ) = ( ( 1 · 𝑋 ) + ( 1 · 𝑋 ) ) )
29 11 28 eqtr4d ( 𝜑 → ( 𝑋 + 𝑋 ) = ( ( 1 + 1 ) · 𝑋 ) )