Metamath Proof Explorer


Theorem oa0

Description: Addition with zero. Proposition 8.3 of TakeutiZaring p. 57. (Contributed by NM, 3-May-1995) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion oa0 ( 𝐴 ∈ On → ( 𝐴 +o ∅ ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 0elon ∅ ∈ On
2 oav ( ( 𝐴 ∈ On ∧ ∅ ∈ On ) → ( 𝐴 +o ∅ ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ ∅ ) )
3 1 2 mpan2 ( 𝐴 ∈ On → ( 𝐴 +o ∅ ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ ∅ ) )
4 rdg0g ( 𝐴 ∈ On → ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ ∅ ) = 𝐴 )
5 3 4 eqtrd ( 𝐴 ∈ On → ( 𝐴 +o ∅ ) = 𝐴 )