Description: Addition with zero. Proposition 8.3 of TakeutiZaring p. 57. (Contributed by NM, 3-May-1995) (Revised by Mario Carneiro, 8-Sep-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | oa0 | ⊢ ( 𝐴 ∈ On → ( 𝐴 +o ∅ ) = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elon | ⊢ ∅ ∈ On | |
2 | oav | ⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ On ) → ( 𝐴 +o ∅ ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ ∅ ) ) | |
3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ On → ( 𝐴 +o ∅ ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ ∅ ) ) |
4 | rdg0g | ⊢ ( 𝐴 ∈ On → ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ ∅ ) = 𝐴 ) | |
5 | 3 4 | eqtrd | ⊢ ( 𝐴 ∈ On → ( 𝐴 +o ∅ ) = 𝐴 ) |