| Step | Hyp | Ref | Expression | 
						
							| 1 |  | on0eln0 | ⊢ ( 𝐴  ∈  On  →  ( ∅  ∈  𝐴  ↔  𝐴  ≠  ∅ ) ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ∅  ∈  𝐴  ↔  𝐴  ≠  ∅ ) ) | 
						
							| 3 |  | oaword1 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  𝐴  ⊆  ( 𝐴  +o  𝐵 ) ) | 
						
							| 4 | 3 | sseld | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ∅  ∈  𝐴  →  ∅  ∈  ( 𝐴  +o  𝐵 ) ) ) | 
						
							| 5 | 2 4 | sylbird | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  ≠  ∅  →  ∅  ∈  ( 𝐴  +o  𝐵 ) ) ) | 
						
							| 6 |  | ne0i | ⊢ ( ∅  ∈  ( 𝐴  +o  𝐵 )  →  ( 𝐴  +o  𝐵 )  ≠  ∅ ) | 
						
							| 7 | 5 6 | syl6 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  ≠  ∅  →  ( 𝐴  +o  𝐵 )  ≠  ∅ ) ) | 
						
							| 8 | 7 | necon4d | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝐴  +o  𝐵 )  =  ∅  →  𝐴  =  ∅ ) ) | 
						
							| 9 |  | on0eln0 | ⊢ ( 𝐵  ∈  On  →  ( ∅  ∈  𝐵  ↔  𝐵  ≠  ∅ ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ∅  ∈  𝐵  ↔  𝐵  ≠  ∅ ) ) | 
						
							| 11 |  | 0elon | ⊢ ∅  ∈  On | 
						
							| 12 |  | oaord | ⊢ ( ( ∅  ∈  On  ∧  𝐵  ∈  On  ∧  𝐴  ∈  On )  →  ( ∅  ∈  𝐵  ↔  ( 𝐴  +o  ∅ )  ∈  ( 𝐴  +o  𝐵 ) ) ) | 
						
							| 13 | 11 12 | mp3an1 | ⊢ ( ( 𝐵  ∈  On  ∧  𝐴  ∈  On )  →  ( ∅  ∈  𝐵  ↔  ( 𝐴  +o  ∅ )  ∈  ( 𝐴  +o  𝐵 ) ) ) | 
						
							| 14 | 13 | ancoms | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ∅  ∈  𝐵  ↔  ( 𝐴  +o  ∅ )  ∈  ( 𝐴  +o  𝐵 ) ) ) | 
						
							| 15 | 10 14 | bitr3d | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐵  ≠  ∅  ↔  ( 𝐴  +o  ∅ )  ∈  ( 𝐴  +o  𝐵 ) ) ) | 
						
							| 16 |  | ne0i | ⊢ ( ( 𝐴  +o  ∅ )  ∈  ( 𝐴  +o  𝐵 )  →  ( 𝐴  +o  𝐵 )  ≠  ∅ ) | 
						
							| 17 | 15 16 | biimtrdi | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐵  ≠  ∅  →  ( 𝐴  +o  𝐵 )  ≠  ∅ ) ) | 
						
							| 18 | 17 | necon4d | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝐴  +o  𝐵 )  =  ∅  →  𝐵  =  ∅ ) ) | 
						
							| 19 | 8 18 | jcad | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝐴  +o  𝐵 )  =  ∅  →  ( 𝐴  =  ∅  ∧  𝐵  =  ∅ ) ) ) | 
						
							| 20 |  | oveq12 | ⊢ ( ( 𝐴  =  ∅  ∧  𝐵  =  ∅ )  →  ( 𝐴  +o  𝐵 )  =  ( ∅  +o  ∅ ) ) | 
						
							| 21 |  | oa0 | ⊢ ( ∅  ∈  On  →  ( ∅  +o  ∅ )  =  ∅ ) | 
						
							| 22 | 11 21 | ax-mp | ⊢ ( ∅  +o  ∅ )  =  ∅ | 
						
							| 23 | 20 22 | eqtrdi | ⊢ ( ( 𝐴  =  ∅  ∧  𝐵  =  ∅ )  →  ( 𝐴  +o  𝐵 )  =  ∅ ) | 
						
							| 24 | 19 23 | impbid1 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝐴  +o  𝐵 )  =  ∅  ↔  ( 𝐴  =  ∅  ∧  𝐵  =  ∅ ) ) ) |