Step |
Hyp |
Ref |
Expression |
1 |
|
on0eln0 |
⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
3 |
|
oaword1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ⊆ ( 𝐴 +o 𝐵 ) ) |
4 |
3
|
sseld |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ∈ 𝐴 → ∅ ∈ ( 𝐴 +o 𝐵 ) ) ) |
5 |
2 4
|
sylbird |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ≠ ∅ → ∅ ∈ ( 𝐴 +o 𝐵 ) ) ) |
6 |
|
ne0i |
⊢ ( ∅ ∈ ( 𝐴 +o 𝐵 ) → ( 𝐴 +o 𝐵 ) ≠ ∅ ) |
7 |
5 6
|
syl6 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ≠ ∅ → ( 𝐴 +o 𝐵 ) ≠ ∅ ) ) |
8 |
7
|
necon4d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) = ∅ → 𝐴 = ∅ ) ) |
9 |
|
on0eln0 |
⊢ ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅ ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅ ) ) |
11 |
|
0elon |
⊢ ∅ ∈ On |
12 |
|
oaord |
⊢ ( ( ∅ ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ∈ 𝐵 ↔ ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝐵 ) ) ) |
13 |
11 12
|
mp3an1 |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ∈ 𝐵 ↔ ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝐵 ) ) ) |
14 |
13
|
ancoms |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ∈ 𝐵 ↔ ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝐵 ) ) ) |
15 |
10 14
|
bitr3d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ≠ ∅ ↔ ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝐵 ) ) ) |
16 |
|
ne0i |
⊢ ( ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝐵 ) → ( 𝐴 +o 𝐵 ) ≠ ∅ ) |
17 |
15 16
|
syl6bi |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ≠ ∅ → ( 𝐴 +o 𝐵 ) ≠ ∅ ) ) |
18 |
17
|
necon4d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) = ∅ → 𝐵 = ∅ ) ) |
19 |
8 18
|
jcad |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) = ∅ → ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ) ) |
20 |
|
oveq12 |
⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → ( 𝐴 +o 𝐵 ) = ( ∅ +o ∅ ) ) |
21 |
|
oa0 |
⊢ ( ∅ ∈ On → ( ∅ +o ∅ ) = ∅ ) |
22 |
11 21
|
ax-mp |
⊢ ( ∅ +o ∅ ) = ∅ |
23 |
20 22
|
eqtrdi |
⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → ( 𝐴 +o 𝐵 ) = ∅ ) |
24 |
19 23
|
impbid1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) = ∅ ↔ ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ) ) |