Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( ∅ +o 𝑥 ) = ( ∅ +o ∅ ) ) |
2 |
|
id |
⊢ ( 𝑥 = ∅ → 𝑥 = ∅ ) |
3 |
1 2
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( ∅ +o 𝑥 ) = 𝑥 ↔ ( ∅ +o ∅ ) = ∅ ) ) |
4 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( ∅ +o 𝑥 ) = ( ∅ +o 𝑦 ) ) |
5 |
|
id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
6 |
4 5
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ∅ +o 𝑥 ) = 𝑥 ↔ ( ∅ +o 𝑦 ) = 𝑦 ) ) |
7 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( ∅ +o 𝑥 ) = ( ∅ +o suc 𝑦 ) ) |
8 |
|
id |
⊢ ( 𝑥 = suc 𝑦 → 𝑥 = suc 𝑦 ) |
9 |
7 8
|
eqeq12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( ∅ +o 𝑥 ) = 𝑥 ↔ ( ∅ +o suc 𝑦 ) = suc 𝑦 ) ) |
10 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( ∅ +o 𝑥 ) = ( ∅ +o 𝐴 ) ) |
11 |
|
id |
⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) |
12 |
10 11
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( ∅ +o 𝑥 ) = 𝑥 ↔ ( ∅ +o 𝐴 ) = 𝐴 ) ) |
13 |
|
0elon |
⊢ ∅ ∈ On |
14 |
|
oa0 |
⊢ ( ∅ ∈ On → ( ∅ +o ∅ ) = ∅ ) |
15 |
13 14
|
ax-mp |
⊢ ( ∅ +o ∅ ) = ∅ |
16 |
|
oasuc |
⊢ ( ( ∅ ∈ On ∧ 𝑦 ∈ On ) → ( ∅ +o suc 𝑦 ) = suc ( ∅ +o 𝑦 ) ) |
17 |
13 16
|
mpan |
⊢ ( 𝑦 ∈ On → ( ∅ +o suc 𝑦 ) = suc ( ∅ +o 𝑦 ) ) |
18 |
|
suceq |
⊢ ( ( ∅ +o 𝑦 ) = 𝑦 → suc ( ∅ +o 𝑦 ) = suc 𝑦 ) |
19 |
17 18
|
sylan9eq |
⊢ ( ( 𝑦 ∈ On ∧ ( ∅ +o 𝑦 ) = 𝑦 ) → ( ∅ +o suc 𝑦 ) = suc 𝑦 ) |
20 |
19
|
ex |
⊢ ( 𝑦 ∈ On → ( ( ∅ +o 𝑦 ) = 𝑦 → ( ∅ +o suc 𝑦 ) = suc 𝑦 ) ) |
21 |
|
iuneq2 |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( ∅ +o 𝑦 ) = 𝑦 → ∪ 𝑦 ∈ 𝑥 ( ∅ +o 𝑦 ) = ∪ 𝑦 ∈ 𝑥 𝑦 ) |
22 |
|
uniiun |
⊢ ∪ 𝑥 = ∪ 𝑦 ∈ 𝑥 𝑦 |
23 |
21 22
|
eqtr4di |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( ∅ +o 𝑦 ) = 𝑦 → ∪ 𝑦 ∈ 𝑥 ( ∅ +o 𝑦 ) = ∪ 𝑥 ) |
24 |
|
vex |
⊢ 𝑥 ∈ V |
25 |
|
oalim |
⊢ ( ( ∅ ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( ∅ +o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ∅ +o 𝑦 ) ) |
26 |
13 25
|
mpan |
⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → ( ∅ +o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ∅ +o 𝑦 ) ) |
27 |
24 26
|
mpan |
⊢ ( Lim 𝑥 → ( ∅ +o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ∅ +o 𝑦 ) ) |
28 |
|
limuni |
⊢ ( Lim 𝑥 → 𝑥 = ∪ 𝑥 ) |
29 |
27 28
|
eqeq12d |
⊢ ( Lim 𝑥 → ( ( ∅ +o 𝑥 ) = 𝑥 ↔ ∪ 𝑦 ∈ 𝑥 ( ∅ +o 𝑦 ) = ∪ 𝑥 ) ) |
30 |
23 29
|
syl5ibr |
⊢ ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( ∅ +o 𝑦 ) = 𝑦 → ( ∅ +o 𝑥 ) = 𝑥 ) ) |
31 |
3 6 9 12 15 20 30
|
tfinds |
⊢ ( 𝐴 ∈ On → ( ∅ +o 𝐴 ) = 𝐴 ) |