Description: Addition with 1 is same as successor. Proposition 4.34(a) of Mendelson p. 266. (Contributed by NM, 29-Oct-1995) (Revised by Mario Carneiro, 16-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | oa1suc | ⊢ ( 𝐴 ∈ On → ( 𝐴 +o 1o ) = suc 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o | ⊢ 1o = suc ∅ | |
2 | 1 | oveq2i | ⊢ ( 𝐴 +o 1o ) = ( 𝐴 +o suc ∅ ) |
3 | peano1 | ⊢ ∅ ∈ ω | |
4 | onasuc | ⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ ω ) → ( 𝐴 +o suc ∅ ) = suc ( 𝐴 +o ∅ ) ) | |
5 | 3 4 | mpan2 | ⊢ ( 𝐴 ∈ On → ( 𝐴 +o suc ∅ ) = suc ( 𝐴 +o ∅ ) ) |
6 | 2 5 | eqtrid | ⊢ ( 𝐴 ∈ On → ( 𝐴 +o 1o ) = suc ( 𝐴 +o ∅ ) ) |
7 | oa0 | ⊢ ( 𝐴 ∈ On → ( 𝐴 +o ∅ ) = 𝐴 ) | |
8 | suceq | ⊢ ( ( 𝐴 +o ∅ ) = 𝐴 → suc ( 𝐴 +o ∅ ) = suc 𝐴 ) | |
9 | 7 8 | syl | ⊢ ( 𝐴 ∈ On → suc ( 𝐴 +o ∅ ) = suc 𝐴 ) |
10 | 6 9 | eqtrd | ⊢ ( 𝐴 ∈ On → ( 𝐴 +o 1o ) = suc 𝐴 ) |