Metamath Proof Explorer


Theorem oa1suc

Description: Addition with 1 is same as successor. Proposition 4.34(a) of Mendelson p. 266. (Contributed by NM, 29-Oct-1995) (Revised by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion oa1suc ( 𝐴 ∈ On → ( 𝐴 +o 1o ) = suc 𝐴 )

Proof

Step Hyp Ref Expression
1 df-1o 1o = suc ∅
2 1 oveq2i ( 𝐴 +o 1o ) = ( 𝐴 +o suc ∅ )
3 peano1 ∅ ∈ ω
4 onasuc ( ( 𝐴 ∈ On ∧ ∅ ∈ ω ) → ( 𝐴 +o suc ∅ ) = suc ( 𝐴 +o ∅ ) )
5 3 4 mpan2 ( 𝐴 ∈ On → ( 𝐴 +o suc ∅ ) = suc ( 𝐴 +o ∅ ) )
6 2 5 eqtrid ( 𝐴 ∈ On → ( 𝐴 +o 1o ) = suc ( 𝐴 +o ∅ ) )
7 oa0 ( 𝐴 ∈ On → ( 𝐴 +o ∅ ) = 𝐴 )
8 suceq ( ( 𝐴 +o ∅ ) = 𝐴 → suc ( 𝐴 +o ∅ ) = suc 𝐴 )
9 7 8 syl ( 𝐴 ∈ On → suc ( 𝐴 +o ∅ ) = suc 𝐴 )
10 6 9 eqtrd ( 𝐴 ∈ On → ( 𝐴 +o 1o ) = suc 𝐴 )