Step |
Hyp |
Ref |
Expression |
1 |
|
ssexg |
⊢ ( ( ω ⊆ 𝐵 ∧ 𝐵 ∈ On ) → ω ∈ V ) |
2 |
1
|
ex |
⊢ ( ω ⊆ 𝐵 → ( 𝐵 ∈ On → ω ∈ V ) ) |
3 |
|
omelon2 |
⊢ ( ω ∈ V → ω ∈ On ) |
4 |
2 3
|
syl6com |
⊢ ( 𝐵 ∈ On → ( ω ⊆ 𝐵 → ω ∈ On ) ) |
5 |
4
|
imp |
⊢ ( ( 𝐵 ∈ On ∧ ω ⊆ 𝐵 ) → ω ∈ On ) |
6 |
5
|
adantll |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) → ω ∈ On ) |
7 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) → 𝐵 ∈ On ) |
8 |
6 7
|
jca |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) → ( ω ∈ On ∧ 𝐵 ∈ On ) ) |
9 |
|
oawordeu |
⊢ ( ( ( ω ∈ On ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) → ∃! 𝑥 ∈ On ( ω +o 𝑥 ) = 𝐵 ) |
10 |
8 9
|
sylancom |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) → ∃! 𝑥 ∈ On ( ω +o 𝑥 ) = 𝐵 ) |
11 |
|
reurex |
⊢ ( ∃! 𝑥 ∈ On ( ω +o 𝑥 ) = 𝐵 → ∃ 𝑥 ∈ On ( ω +o 𝑥 ) = 𝐵 ) |
12 |
10 11
|
syl |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) → ∃ 𝑥 ∈ On ( ω +o 𝑥 ) = 𝐵 ) |
13 |
|
nnon |
⊢ ( 𝐴 ∈ ω → 𝐴 ∈ On ) |
14 |
13
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) ∧ 𝑥 ∈ On ) → 𝐴 ∈ On ) |
15 |
6
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) ∧ 𝑥 ∈ On ) → ω ∈ On ) |
16 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) ∧ 𝑥 ∈ On ) → 𝑥 ∈ On ) |
17 |
|
oaass |
⊢ ( ( 𝐴 ∈ On ∧ ω ∈ On ∧ 𝑥 ∈ On ) → ( ( 𝐴 +o ω ) +o 𝑥 ) = ( 𝐴 +o ( ω +o 𝑥 ) ) ) |
18 |
14 15 16 17
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) ∧ 𝑥 ∈ On ) → ( ( 𝐴 +o ω ) +o 𝑥 ) = ( 𝐴 +o ( ω +o 𝑥 ) ) ) |
19 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) → 𝐴 ∈ ω ) |
20 |
|
oaabslem |
⊢ ( ( ω ∈ On ∧ 𝐴 ∈ ω ) → ( 𝐴 +o ω ) = ω ) |
21 |
6 19 20
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) → ( 𝐴 +o ω ) = ω ) |
22 |
21
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) ∧ 𝑥 ∈ On ) → ( 𝐴 +o ω ) = ω ) |
23 |
22
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) ∧ 𝑥 ∈ On ) → ( ( 𝐴 +o ω ) +o 𝑥 ) = ( ω +o 𝑥 ) ) |
24 |
18 23
|
eqtr3d |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) ∧ 𝑥 ∈ On ) → ( 𝐴 +o ( ω +o 𝑥 ) ) = ( ω +o 𝑥 ) ) |
25 |
|
oveq2 |
⊢ ( ( ω +o 𝑥 ) = 𝐵 → ( 𝐴 +o ( ω +o 𝑥 ) ) = ( 𝐴 +o 𝐵 ) ) |
26 |
|
id |
⊢ ( ( ω +o 𝑥 ) = 𝐵 → ( ω +o 𝑥 ) = 𝐵 ) |
27 |
25 26
|
eqeq12d |
⊢ ( ( ω +o 𝑥 ) = 𝐵 → ( ( 𝐴 +o ( ω +o 𝑥 ) ) = ( ω +o 𝑥 ) ↔ ( 𝐴 +o 𝐵 ) = 𝐵 ) ) |
28 |
24 27
|
syl5ibcom |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) ∧ 𝑥 ∈ On ) → ( ( ω +o 𝑥 ) = 𝐵 → ( 𝐴 +o 𝐵 ) = 𝐵 ) ) |
29 |
28
|
rexlimdva |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) → ( ∃ 𝑥 ∈ On ( ω +o 𝑥 ) = 𝐵 → ( 𝐴 +o 𝐵 ) = 𝐵 ) ) |
30 |
12 29
|
mpd |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) → ( 𝐴 +o 𝐵 ) = 𝐵 ) |