| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssexg | ⊢ ( ( ω  ⊆  𝐵  ∧  𝐵  ∈  On )  →  ω  ∈  V ) | 
						
							| 2 | 1 | ex | ⊢ ( ω  ⊆  𝐵  →  ( 𝐵  ∈  On  →  ω  ∈  V ) ) | 
						
							| 3 |  | omelon2 | ⊢ ( ω  ∈  V  →  ω  ∈  On ) | 
						
							| 4 | 2 3 | syl6com | ⊢ ( 𝐵  ∈  On  →  ( ω  ⊆  𝐵  →  ω  ∈  On ) ) | 
						
							| 5 | 4 | imp | ⊢ ( ( 𝐵  ∈  On  ∧  ω  ⊆  𝐵 )  →  ω  ∈  On ) | 
						
							| 6 | 5 | adantll | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  On )  ∧  ω  ⊆  𝐵 )  →  ω  ∈  On ) | 
						
							| 7 |  | simplr | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  On )  ∧  ω  ⊆  𝐵 )  →  𝐵  ∈  On ) | 
						
							| 8 | 6 7 | jca | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  On )  ∧  ω  ⊆  𝐵 )  →  ( ω  ∈  On  ∧  𝐵  ∈  On ) ) | 
						
							| 9 |  | oawordeu | ⊢ ( ( ( ω  ∈  On  ∧  𝐵  ∈  On )  ∧  ω  ⊆  𝐵 )  →  ∃! 𝑥  ∈  On ( ω  +o  𝑥 )  =  𝐵 ) | 
						
							| 10 | 8 9 | sylancom | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  On )  ∧  ω  ⊆  𝐵 )  →  ∃! 𝑥  ∈  On ( ω  +o  𝑥 )  =  𝐵 ) | 
						
							| 11 |  | reurex | ⊢ ( ∃! 𝑥  ∈  On ( ω  +o  𝑥 )  =  𝐵  →  ∃ 𝑥  ∈  On ( ω  +o  𝑥 )  =  𝐵 ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  On )  ∧  ω  ⊆  𝐵 )  →  ∃ 𝑥  ∈  On ( ω  +o  𝑥 )  =  𝐵 ) | 
						
							| 13 |  | nnon | ⊢ ( 𝐴  ∈  ω  →  𝐴  ∈  On ) | 
						
							| 14 | 13 | ad3antrrr | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  On )  ∧  ω  ⊆  𝐵 )  ∧  𝑥  ∈  On )  →  𝐴  ∈  On ) | 
						
							| 15 | 6 | adantr | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  On )  ∧  ω  ⊆  𝐵 )  ∧  𝑥  ∈  On )  →  ω  ∈  On ) | 
						
							| 16 |  | simpr | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  On )  ∧  ω  ⊆  𝐵 )  ∧  𝑥  ∈  On )  →  𝑥  ∈  On ) | 
						
							| 17 |  | oaass | ⊢ ( ( 𝐴  ∈  On  ∧  ω  ∈  On  ∧  𝑥  ∈  On )  →  ( ( 𝐴  +o  ω )  +o  𝑥 )  =  ( 𝐴  +o  ( ω  +o  𝑥 ) ) ) | 
						
							| 18 | 14 15 16 17 | syl3anc | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  On )  ∧  ω  ⊆  𝐵 )  ∧  𝑥  ∈  On )  →  ( ( 𝐴  +o  ω )  +o  𝑥 )  =  ( 𝐴  +o  ( ω  +o  𝑥 ) ) ) | 
						
							| 19 |  | simpll | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  On )  ∧  ω  ⊆  𝐵 )  →  𝐴  ∈  ω ) | 
						
							| 20 |  | oaabslem | ⊢ ( ( ω  ∈  On  ∧  𝐴  ∈  ω )  →  ( 𝐴  +o  ω )  =  ω ) | 
						
							| 21 | 6 19 20 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  On )  ∧  ω  ⊆  𝐵 )  →  ( 𝐴  +o  ω )  =  ω ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  On )  ∧  ω  ⊆  𝐵 )  ∧  𝑥  ∈  On )  →  ( 𝐴  +o  ω )  =  ω ) | 
						
							| 23 | 22 | oveq1d | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  On )  ∧  ω  ⊆  𝐵 )  ∧  𝑥  ∈  On )  →  ( ( 𝐴  +o  ω )  +o  𝑥 )  =  ( ω  +o  𝑥 ) ) | 
						
							| 24 | 18 23 | eqtr3d | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  On )  ∧  ω  ⊆  𝐵 )  ∧  𝑥  ∈  On )  →  ( 𝐴  +o  ( ω  +o  𝑥 ) )  =  ( ω  +o  𝑥 ) ) | 
						
							| 25 |  | oveq2 | ⊢ ( ( ω  +o  𝑥 )  =  𝐵  →  ( 𝐴  +o  ( ω  +o  𝑥 ) )  =  ( 𝐴  +o  𝐵 ) ) | 
						
							| 26 |  | id | ⊢ ( ( ω  +o  𝑥 )  =  𝐵  →  ( ω  +o  𝑥 )  =  𝐵 ) | 
						
							| 27 | 25 26 | eqeq12d | ⊢ ( ( ω  +o  𝑥 )  =  𝐵  →  ( ( 𝐴  +o  ( ω  +o  𝑥 ) )  =  ( ω  +o  𝑥 )  ↔  ( 𝐴  +o  𝐵 )  =  𝐵 ) ) | 
						
							| 28 | 24 27 | syl5ibcom | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  On )  ∧  ω  ⊆  𝐵 )  ∧  𝑥  ∈  On )  →  ( ( ω  +o  𝑥 )  =  𝐵  →  ( 𝐴  +o  𝐵 )  =  𝐵 ) ) | 
						
							| 29 | 28 | rexlimdva | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  On )  ∧  ω  ⊆  𝐵 )  →  ( ∃ 𝑥  ∈  On ( ω  +o  𝑥 )  =  𝐵  →  ( 𝐴  +o  𝐵 )  =  𝐵 ) ) | 
						
							| 30 | 12 29 | mpd | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  On )  ∧  ω  ⊆  𝐵 )  →  ( 𝐴  +o  𝐵 )  =  𝐵 ) |