| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnon |
⊢ ( 𝐴 ∈ ω → 𝐴 ∈ On ) |
| 2 |
|
limom |
⊢ Lim ω |
| 3 |
2
|
jctr |
⊢ ( ω ∈ On → ( ω ∈ On ∧ Lim ω ) ) |
| 4 |
|
oalim |
⊢ ( ( 𝐴 ∈ On ∧ ( ω ∈ On ∧ Lim ω ) ) → ( 𝐴 +o ω ) = ∪ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) ) |
| 5 |
1 3 4
|
syl2an |
⊢ ( ( 𝐴 ∈ ω ∧ ω ∈ On ) → ( 𝐴 +o ω ) = ∪ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) ) |
| 6 |
|
ordom |
⊢ Ord ω |
| 7 |
|
nnacl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( 𝐴 +o 𝑥 ) ∈ ω ) |
| 8 |
|
ordelss |
⊢ ( ( Ord ω ∧ ( 𝐴 +o 𝑥 ) ∈ ω ) → ( 𝐴 +o 𝑥 ) ⊆ ω ) |
| 9 |
6 7 8
|
sylancr |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( 𝐴 +o 𝑥 ) ⊆ ω ) |
| 10 |
9
|
ralrimiva |
⊢ ( 𝐴 ∈ ω → ∀ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) ⊆ ω ) |
| 11 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) ⊆ ω ↔ ∀ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) ⊆ ω ) |
| 12 |
10 11
|
sylibr |
⊢ ( 𝐴 ∈ ω → ∪ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) ⊆ ω ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝐴 ∈ ω ∧ ω ∈ On ) → ∪ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) ⊆ ω ) |
| 14 |
5 13
|
eqsstrd |
⊢ ( ( 𝐴 ∈ ω ∧ ω ∈ On ) → ( 𝐴 +o ω ) ⊆ ω ) |
| 15 |
14
|
ancoms |
⊢ ( ( ω ∈ On ∧ 𝐴 ∈ ω ) → ( 𝐴 +o ω ) ⊆ ω ) |
| 16 |
|
oaword2 |
⊢ ( ( ω ∈ On ∧ 𝐴 ∈ On ) → ω ⊆ ( 𝐴 +o ω ) ) |
| 17 |
1 16
|
sylan2 |
⊢ ( ( ω ∈ On ∧ 𝐴 ∈ ω ) → ω ⊆ ( 𝐴 +o ω ) ) |
| 18 |
15 17
|
eqssd |
⊢ ( ( ω ∈ On ∧ 𝐴 ∈ ω ) → ( 𝐴 +o ω ) = ω ) |