Step |
Hyp |
Ref |
Expression |
1 |
|
oaord |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 ∈ 𝐶 ↔ ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o 𝐶 ) ) ) |
2 |
1
|
3comr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 ∈ 𝐶 ↔ ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o 𝐶 ) ) ) |
3 |
|
oaord |
⊢ ( ( 𝐶 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐶 ∈ 𝐵 ↔ ( 𝐴 +o 𝐶 ) ∈ ( 𝐴 +o 𝐵 ) ) ) |
4 |
3
|
3com13 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐶 ∈ 𝐵 ↔ ( 𝐴 +o 𝐶 ) ∈ ( 𝐴 +o 𝐵 ) ) ) |
5 |
2 4
|
orbi12d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) ↔ ( ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o 𝐶 ) ∨ ( 𝐴 +o 𝐶 ) ∈ ( 𝐴 +o 𝐵 ) ) ) ) |
6 |
5
|
notbid |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ¬ ( 𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) ↔ ¬ ( ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o 𝐶 ) ∨ ( 𝐴 +o 𝐶 ) ∈ ( 𝐴 +o 𝐵 ) ) ) ) |
7 |
|
eloni |
⊢ ( 𝐵 ∈ On → Ord 𝐵 ) |
8 |
|
eloni |
⊢ ( 𝐶 ∈ On → Ord 𝐶 ) |
9 |
|
ordtri3 |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐵 = 𝐶 ↔ ¬ ( 𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) ) ) |
10 |
7 8 9
|
syl2an |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 = 𝐶 ↔ ¬ ( 𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) ) ) |
11 |
10
|
3adant1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 = 𝐶 ↔ ¬ ( 𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) ) ) |
12 |
|
oacl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) ∈ On ) |
13 |
|
eloni |
⊢ ( ( 𝐴 +o 𝐵 ) ∈ On → Ord ( 𝐴 +o 𝐵 ) ) |
14 |
12 13
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → Ord ( 𝐴 +o 𝐵 ) ) |
15 |
|
oacl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 +o 𝐶 ) ∈ On ) |
16 |
|
eloni |
⊢ ( ( 𝐴 +o 𝐶 ) ∈ On → Ord ( 𝐴 +o 𝐶 ) ) |
17 |
15 16
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → Ord ( 𝐴 +o 𝐶 ) ) |
18 |
|
ordtri3 |
⊢ ( ( Ord ( 𝐴 +o 𝐵 ) ∧ Ord ( 𝐴 +o 𝐶 ) ) → ( ( 𝐴 +o 𝐵 ) = ( 𝐴 +o 𝐶 ) ↔ ¬ ( ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o 𝐶 ) ∨ ( 𝐴 +o 𝐶 ) ∈ ( 𝐴 +o 𝐵 ) ) ) ) |
19 |
14 17 18
|
syl2an |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) ) → ( ( 𝐴 +o 𝐵 ) = ( 𝐴 +o 𝐶 ) ↔ ¬ ( ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o 𝐶 ) ∨ ( 𝐴 +o 𝐶 ) ∈ ( 𝐴 +o 𝐵 ) ) ) ) |
20 |
19
|
3impdi |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 +o 𝐵 ) = ( 𝐴 +o 𝐶 ) ↔ ¬ ( ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o 𝐶 ) ∨ ( 𝐴 +o 𝐶 ) ∈ ( 𝐴 +o 𝐵 ) ) ) ) |
21 |
6 11 20
|
3bitr4rd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 +o 𝐵 ) = ( 𝐴 +o 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |