| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dfcgra2.p | 
							⊢ 𝑃  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							dfcgra2.i | 
							⊢ 𝐼  =  ( Itv ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							dfcgra2.m | 
							⊢  −   =  ( dist ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							dfcgra2.g | 
							⊢ ( 𝜑  →  𝐺  ∈  TarskiG )  | 
						
						
							| 5 | 
							
								
							 | 
							dfcgra2.a | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑃 )  | 
						
						
							| 6 | 
							
								
							 | 
							dfcgra2.b | 
							⊢ ( 𝜑  →  𝐵  ∈  𝑃 )  | 
						
						
							| 7 | 
							
								
							 | 
							dfcgra2.c | 
							⊢ ( 𝜑  →  𝐶  ∈  𝑃 )  | 
						
						
							| 8 | 
							
								
							 | 
							dfcgra2.d | 
							⊢ ( 𝜑  →  𝐷  ∈  𝑃 )  | 
						
						
							| 9 | 
							
								
							 | 
							dfcgra2.e | 
							⊢ ( 𝜑  →  𝐸  ∈  𝑃 )  | 
						
						
							| 10 | 
							
								
							 | 
							dfcgra2.f | 
							⊢ ( 𝜑  →  𝐹  ∈  𝑃 )  | 
						
						
							| 11 | 
							
								
							 | 
							oacgr.1 | 
							⊢ ( 𝜑  →  𝐵  ∈  ( 𝐴 𝐼 𝐷 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							oacgr.2 | 
							⊢ ( 𝜑  →  𝐵  ∈  ( 𝐶 𝐼 𝐹 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							oacgr.3 | 
							⊢ ( 𝜑  →  𝐵  ≠  𝐴 )  | 
						
						
							| 14 | 
							
								
							 | 
							oacgr.4 | 
							⊢ ( 𝜑  →  𝐵  ≠  𝐶 )  | 
						
						
							| 15 | 
							
								
							 | 
							oacgr.5 | 
							⊢ ( 𝜑  →  𝐵  ≠  𝐷 )  | 
						
						
							| 16 | 
							
								
							 | 
							oacgr.6 | 
							⊢ ( 𝜑  →  𝐵  ≠  𝐹 )  | 
						
						
							| 17 | 
							
								
							 | 
							eqid | 
							⊢ ( hlG ‘ 𝐺 )  =  ( hlG ‘ 𝐺 )  | 
						
						
							| 18 | 
							
								13
							 | 
							necomd | 
							⊢ ( 𝜑  →  𝐴  ≠  𝐵 )  | 
						
						
							| 19 | 
							
								1 2 4 17 5 6 7 18 14
							 | 
							cgraswap | 
							⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐶 𝐵 𝐴 ”〉 )  | 
						
						
							| 20 | 
							
								16
							 | 
							necomd | 
							⊢ ( 𝜑  →  𝐹  ≠  𝐵 )  | 
						
						
							| 21 | 
							
								1 2 4 17 10 6 5 20 13
							 | 
							cgraswap | 
							⊢ ( 𝜑  →  〈“ 𝐹 𝐵 𝐴 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐹 ”〉 )  | 
						
						
							| 22 | 
							
								1 3 2 4 7 6 10 12
							 | 
							tgbtwncom | 
							⊢ ( 𝜑  →  𝐵  ∈  ( 𝐹 𝐼 𝐶 ) )  | 
						
						
							| 23 | 
							
								1 2 3 4 10 6 5 5 6 10 7 8 21 22 11 14 15
							 | 
							sacgr | 
							⊢ ( 𝜑  →  〈“ 𝐶 𝐵 𝐴 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐷 𝐵 𝐹 ”〉 )  | 
						
						
							| 24 | 
							
								1 2 4 17 5 6 7 7 6 5 19 8 6 10 23
							 | 
							cgratr | 
							⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐷 𝐵 𝐹 ”〉 )  |