| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o ∅ ) ) |
| 2 |
1
|
eleq1d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 +o 𝑥 ) ∈ On ↔ ( 𝐴 +o ∅ ) ∈ On ) ) |
| 3 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝑦 ) ) |
| 4 |
3
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 +o 𝑥 ) ∈ On ↔ ( 𝐴 +o 𝑦 ) ∈ On ) ) |
| 5 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o suc 𝑦 ) ) |
| 6 |
5
|
eleq1d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 +o 𝑥 ) ∈ On ↔ ( 𝐴 +o suc 𝑦 ) ∈ On ) ) |
| 7 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝐵 ) ) |
| 8 |
7
|
eleq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 +o 𝑥 ) ∈ On ↔ ( 𝐴 +o 𝐵 ) ∈ On ) ) |
| 9 |
|
oa0 |
⊢ ( 𝐴 ∈ On → ( 𝐴 +o ∅ ) = 𝐴 ) |
| 10 |
9
|
eleq1d |
⊢ ( 𝐴 ∈ On → ( ( 𝐴 +o ∅ ) ∈ On ↔ 𝐴 ∈ On ) ) |
| 11 |
10
|
ibir |
⊢ ( 𝐴 ∈ On → ( 𝐴 +o ∅ ) ∈ On ) |
| 12 |
|
onsuc |
⊢ ( ( 𝐴 +o 𝑦 ) ∈ On → suc ( 𝐴 +o 𝑦 ) ∈ On ) |
| 13 |
|
oasuc |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 +o suc 𝑦 ) = suc ( 𝐴 +o 𝑦 ) ) |
| 14 |
13
|
eleq1d |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 +o suc 𝑦 ) ∈ On ↔ suc ( 𝐴 +o 𝑦 ) ∈ On ) ) |
| 15 |
12 14
|
imbitrrid |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 +o 𝑦 ) ∈ On → ( 𝐴 +o suc 𝑦 ) ∈ On ) ) |
| 16 |
15
|
expcom |
⊢ ( 𝑦 ∈ On → ( 𝐴 ∈ On → ( ( 𝐴 +o 𝑦 ) ∈ On → ( 𝐴 +o suc 𝑦 ) ∈ On ) ) ) |
| 17 |
|
vex |
⊢ 𝑥 ∈ V |
| 18 |
|
iunon |
⊢ ( ( 𝑥 ∈ V ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ∈ On ) → ∪ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ∈ On ) |
| 19 |
17 18
|
mpan |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ∈ On → ∪ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ∈ On ) |
| 20 |
|
oalim |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( 𝐴 +o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ) |
| 21 |
17 20
|
mpanr1 |
⊢ ( ( 𝐴 ∈ On ∧ Lim 𝑥 ) → ( 𝐴 +o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ) |
| 22 |
21
|
eleq1d |
⊢ ( ( 𝐴 ∈ On ∧ Lim 𝑥 ) → ( ( 𝐴 +o 𝑥 ) ∈ On ↔ ∪ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ∈ On ) ) |
| 23 |
19 22
|
imbitrrid |
⊢ ( ( 𝐴 ∈ On ∧ Lim 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ∈ On → ( 𝐴 +o 𝑥 ) ∈ On ) ) |
| 24 |
23
|
expcom |
⊢ ( Lim 𝑥 → ( 𝐴 ∈ On → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ∈ On → ( 𝐴 +o 𝑥 ) ∈ On ) ) ) |
| 25 |
2 4 6 8 11 16 24
|
tfinds3 |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ On → ( 𝐴 +o 𝐵 ) ∈ On ) ) |
| 26 |
25
|
impcom |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) ∈ On ) |