Step |
Hyp |
Ref |
Expression |
1 |
|
oacomf1olem.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) |
2 |
|
oaf1o |
⊢ ( 𝐵 ∈ On → ( 𝑥 ∈ On ↦ ( 𝐵 +o 𝑥 ) ) : On –1-1-onto→ ( On ∖ 𝐵 ) ) |
3 |
2
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑥 ∈ On ↦ ( 𝐵 +o 𝑥 ) ) : On –1-1-onto→ ( On ∖ 𝐵 ) ) |
4 |
|
f1of1 |
⊢ ( ( 𝑥 ∈ On ↦ ( 𝐵 +o 𝑥 ) ) : On –1-1-onto→ ( On ∖ 𝐵 ) → ( 𝑥 ∈ On ↦ ( 𝐵 +o 𝑥 ) ) : On –1-1→ ( On ∖ 𝐵 ) ) |
5 |
3 4
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑥 ∈ On ↦ ( 𝐵 +o 𝑥 ) ) : On –1-1→ ( On ∖ 𝐵 ) ) |
6 |
|
onss |
⊢ ( 𝐴 ∈ On → 𝐴 ⊆ On ) |
7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ⊆ On ) |
8 |
|
f1ssres |
⊢ ( ( ( 𝑥 ∈ On ↦ ( 𝐵 +o 𝑥 ) ) : On –1-1→ ( On ∖ 𝐵 ) ∧ 𝐴 ⊆ On ) → ( ( 𝑥 ∈ On ↦ ( 𝐵 +o 𝑥 ) ) ↾ 𝐴 ) : 𝐴 –1-1→ ( On ∖ 𝐵 ) ) |
9 |
5 7 8
|
syl2anc |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝑥 ∈ On ↦ ( 𝐵 +o 𝑥 ) ) ↾ 𝐴 ) : 𝐴 –1-1→ ( On ∖ 𝐵 ) ) |
10 |
7
|
resmptd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝑥 ∈ On ↦ ( 𝐵 +o 𝑥 ) ) ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) ) |
11 |
10 1
|
eqtr4di |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝑥 ∈ On ↦ ( 𝐵 +o 𝑥 ) ) ↾ 𝐴 ) = 𝐹 ) |
12 |
|
f1eq1 |
⊢ ( ( ( 𝑥 ∈ On ↦ ( 𝐵 +o 𝑥 ) ) ↾ 𝐴 ) = 𝐹 → ( ( ( 𝑥 ∈ On ↦ ( 𝐵 +o 𝑥 ) ) ↾ 𝐴 ) : 𝐴 –1-1→ ( On ∖ 𝐵 ) ↔ 𝐹 : 𝐴 –1-1→ ( On ∖ 𝐵 ) ) ) |
13 |
11 12
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ( 𝑥 ∈ On ↦ ( 𝐵 +o 𝑥 ) ) ↾ 𝐴 ) : 𝐴 –1-1→ ( On ∖ 𝐵 ) ↔ 𝐹 : 𝐴 –1-1→ ( On ∖ 𝐵 ) ) ) |
14 |
9 13
|
mpbid |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐹 : 𝐴 –1-1→ ( On ∖ 𝐵 ) ) |
15 |
|
f1f1orn |
⊢ ( 𝐹 : 𝐴 –1-1→ ( On ∖ 𝐵 ) → 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ) |
16 |
14 15
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ) |
17 |
|
f1f |
⊢ ( 𝐹 : 𝐴 –1-1→ ( On ∖ 𝐵 ) → 𝐹 : 𝐴 ⟶ ( On ∖ 𝐵 ) ) |
18 |
|
frn |
⊢ ( 𝐹 : 𝐴 ⟶ ( On ∖ 𝐵 ) → ran 𝐹 ⊆ ( On ∖ 𝐵 ) ) |
19 |
14 17 18
|
3syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ran 𝐹 ⊆ ( On ∖ 𝐵 ) ) |
20 |
19
|
difss2d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ran 𝐹 ⊆ On ) |
21 |
|
reldisj |
⊢ ( ran 𝐹 ⊆ On → ( ( ran 𝐹 ∩ 𝐵 ) = ∅ ↔ ran 𝐹 ⊆ ( On ∖ 𝐵 ) ) ) |
22 |
20 21
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ran 𝐹 ∩ 𝐵 ) = ∅ ↔ ran 𝐹 ⊆ ( On ∖ 𝐵 ) ) ) |
23 |
19 22
|
mpbird |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ran 𝐹 ∩ 𝐵 ) = ∅ ) |
24 |
16 23
|
jca |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ∧ ( ran 𝐹 ∩ 𝐵 ) = ∅ ) ) |