Step |
Hyp |
Ref |
Expression |
1 |
|
oacl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 +o 𝑥 ) ∈ On ) |
2 |
|
oaword1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → 𝐴 ⊆ ( 𝐴 +o 𝑥 ) ) |
3 |
|
ontri1 |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐴 +o 𝑥 ) ∈ On ) → ( 𝐴 ⊆ ( 𝐴 +o 𝑥 ) ↔ ¬ ( 𝐴 +o 𝑥 ) ∈ 𝐴 ) ) |
4 |
1 3
|
syldan |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 ⊆ ( 𝐴 +o 𝑥 ) ↔ ¬ ( 𝐴 +o 𝑥 ) ∈ 𝐴 ) ) |
5 |
2 4
|
mpbid |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ¬ ( 𝐴 +o 𝑥 ) ∈ 𝐴 ) |
6 |
1 5
|
eldifd |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 +o 𝑥 ) ∈ ( On ∖ 𝐴 ) ) |
7 |
6
|
ralrimiva |
⊢ ( 𝐴 ∈ On → ∀ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) ∈ ( On ∖ 𝐴 ) ) |
8 |
|
simpl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ ( On ∖ 𝐴 ) ) → 𝐴 ∈ On ) |
9 |
|
eldifi |
⊢ ( 𝑦 ∈ ( On ∖ 𝐴 ) → 𝑦 ∈ On ) |
10 |
9
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ ( On ∖ 𝐴 ) ) → 𝑦 ∈ On ) |
11 |
|
eldifn |
⊢ ( 𝑦 ∈ ( On ∖ 𝐴 ) → ¬ 𝑦 ∈ 𝐴 ) |
12 |
11
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ ( On ∖ 𝐴 ) ) → ¬ 𝑦 ∈ 𝐴 ) |
13 |
|
ontri1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝐴 ) ) |
14 |
10 13
|
syldan |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ ( On ∖ 𝐴 ) ) → ( 𝐴 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝐴 ) ) |
15 |
12 14
|
mpbird |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ ( On ∖ 𝐴 ) ) → 𝐴 ⊆ 𝑦 ) |
16 |
|
oawordeu |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) ∧ 𝐴 ⊆ 𝑦 ) → ∃! 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝑦 ) |
17 |
8 10 15 16
|
syl21anc |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ ( On ∖ 𝐴 ) ) → ∃! 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝑦 ) |
18 |
|
eqcom |
⊢ ( ( 𝐴 +o 𝑥 ) = 𝑦 ↔ 𝑦 = ( 𝐴 +o 𝑥 ) ) |
19 |
18
|
reubii |
⊢ ( ∃! 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝑦 ↔ ∃! 𝑥 ∈ On 𝑦 = ( 𝐴 +o 𝑥 ) ) |
20 |
17 19
|
sylib |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ ( On ∖ 𝐴 ) ) → ∃! 𝑥 ∈ On 𝑦 = ( 𝐴 +o 𝑥 ) ) |
21 |
20
|
ralrimiva |
⊢ ( 𝐴 ∈ On → ∀ 𝑦 ∈ ( On ∖ 𝐴 ) ∃! 𝑥 ∈ On 𝑦 = ( 𝐴 +o 𝑥 ) ) |
22 |
|
eqid |
⊢ ( 𝑥 ∈ On ↦ ( 𝐴 +o 𝑥 ) ) = ( 𝑥 ∈ On ↦ ( 𝐴 +o 𝑥 ) ) |
23 |
22
|
f1ompt |
⊢ ( ( 𝑥 ∈ On ↦ ( 𝐴 +o 𝑥 ) ) : On –1-1-onto→ ( On ∖ 𝐴 ) ↔ ( ∀ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) ∈ ( On ∖ 𝐴 ) ∧ ∀ 𝑦 ∈ ( On ∖ 𝐴 ) ∃! 𝑥 ∈ On 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
24 |
7 21 23
|
sylanbrc |
⊢ ( 𝐴 ∈ On → ( 𝑥 ∈ On ↦ ( 𝐴 +o 𝑥 ) ) : On –1-1-onto→ ( On ∖ 𝐴 ) ) |