Step |
Hyp |
Ref |
Expression |
1 |
|
limelon |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → 𝐵 ∈ On ) |
2 |
|
simpr |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → Lim 𝐵 ) |
3 |
1 2
|
jca |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) |
4 |
|
rdglim2a |
⊢ ( ( 𝐵 ∈ On ∧ Lim 𝐵 ) → ( rec ( ( 𝑦 ∈ V ↦ suc 𝑦 ) , 𝐴 ) ‘ 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( rec ( ( 𝑦 ∈ V ↦ suc 𝑦 ) , 𝐴 ) ‘ 𝑥 ) ) |
5 |
4
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) → ( rec ( ( 𝑦 ∈ V ↦ suc 𝑦 ) , 𝐴 ) ‘ 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( rec ( ( 𝑦 ∈ V ↦ suc 𝑦 ) , 𝐴 ) ‘ 𝑥 ) ) |
6 |
|
oav |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) = ( rec ( ( 𝑦 ∈ V ↦ suc 𝑦 ) , 𝐴 ) ‘ 𝐵 ) ) |
7 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) |
8 |
|
oav |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 +o 𝑥 ) = ( rec ( ( 𝑦 ∈ V ↦ suc 𝑦 ) , 𝐴 ) ‘ 𝑥 ) ) |
9 |
7 8
|
sylan2 |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝐴 +o 𝑥 ) = ( rec ( ( 𝑦 ∈ V ↦ suc 𝑦 ) , 𝐴 ) ‘ 𝑥 ) ) |
10 |
9
|
anassrs |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 +o 𝑥 ) = ( rec ( ( 𝑦 ∈ V ↦ suc 𝑦 ) , 𝐴 ) ‘ 𝑥 ) ) |
11 |
10
|
iuneq2dv |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ∪ 𝑥 ∈ 𝐵 ( 𝐴 +o 𝑥 ) = ∪ 𝑥 ∈ 𝐵 ( rec ( ( 𝑦 ∈ V ↦ suc 𝑦 ) , 𝐴 ) ‘ 𝑥 ) ) |
12 |
6 11
|
eqeq12d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 +o 𝑥 ) ↔ ( rec ( ( 𝑦 ∈ V ↦ suc 𝑦 ) , 𝐴 ) ‘ 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( rec ( ( 𝑦 ∈ V ↦ suc 𝑦 ) , 𝐴 ) ‘ 𝑥 ) ) ) |
13 |
12
|
adantrr |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) → ( ( 𝐴 +o 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 +o 𝑥 ) ↔ ( rec ( ( 𝑦 ∈ V ↦ suc 𝑦 ) , 𝐴 ) ‘ 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( rec ( ( 𝑦 ∈ V ↦ suc 𝑦 ) , 𝐴 ) ‘ 𝑥 ) ) ) |
14 |
5 13
|
mpbird |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) → ( 𝐴 +o 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 +o 𝑥 ) ) |
15 |
3 14
|
sylan2 |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( 𝐴 +o 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 +o 𝑥 ) ) |