| Step | Hyp | Ref | Expression | 
						
							| 1 |  | limelon | ⊢ ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  →  𝐵  ∈  On ) | 
						
							| 2 |  | oacl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  +o  𝐵 )  ∈  On ) | 
						
							| 3 |  | eloni | ⊢ ( ( 𝐴  +o  𝐵 )  ∈  On  →  Ord  ( 𝐴  +o  𝐵 ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  Ord  ( 𝐴  +o  𝐵 ) ) | 
						
							| 5 | 1 4 | sylan2 | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  →  Ord  ( 𝐴  +o  𝐵 ) ) | 
						
							| 6 |  | 0ellim | ⊢ ( Lim  𝐵  →  ∅  ∈  𝐵 ) | 
						
							| 7 |  | n0i | ⊢ ( ∅  ∈  𝐵  →  ¬  𝐵  =  ∅ ) | 
						
							| 8 | 6 7 | syl | ⊢ ( Lim  𝐵  →  ¬  𝐵  =  ∅ ) | 
						
							| 9 | 8 | ad2antll | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  →  ¬  𝐵  =  ∅ ) | 
						
							| 10 |  | oa00 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝐴  +o  𝐵 )  =  ∅  ↔  ( 𝐴  =  ∅  ∧  𝐵  =  ∅ ) ) ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝐴  =  ∅  ∧  𝐵  =  ∅ )  →  𝐵  =  ∅ ) | 
						
							| 12 | 10 11 | biimtrdi | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝐴  +o  𝐵 )  =  ∅  →  𝐵  =  ∅ ) ) | 
						
							| 13 | 12 | con3d | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ¬  𝐵  =  ∅  →  ¬  ( 𝐴  +o  𝐵 )  =  ∅ ) ) | 
						
							| 14 | 1 13 | sylan2 | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  →  ( ¬  𝐵  =  ∅  →  ¬  ( 𝐴  +o  𝐵 )  =  ∅ ) ) | 
						
							| 15 | 9 14 | mpd | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  →  ¬  ( 𝐴  +o  𝐵 )  =  ∅ ) | 
						
							| 16 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 17 | 16 | sucid | ⊢ 𝑦  ∈  suc  𝑦 | 
						
							| 18 |  | oalim | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  →  ( 𝐴  +o  𝐵 )  =  ∪  𝑥  ∈  𝐵 ( 𝐴  +o  𝑥 ) ) | 
						
							| 19 |  | eqeq1 | ⊢ ( ( 𝐴  +o  𝐵 )  =  suc  𝑦  →  ( ( 𝐴  +o  𝐵 )  =  ∪  𝑥  ∈  𝐵 ( 𝐴  +o  𝑥 )  ↔  suc  𝑦  =  ∪  𝑥  ∈  𝐵 ( 𝐴  +o  𝑥 ) ) ) | 
						
							| 20 | 18 19 | imbitrid | ⊢ ( ( 𝐴  +o  𝐵 )  =  suc  𝑦  →  ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  →  suc  𝑦  =  ∪  𝑥  ∈  𝐵 ( 𝐴  +o  𝑥 ) ) ) | 
						
							| 21 | 20 | imp | ⊢ ( ( ( 𝐴  +o  𝐵 )  =  suc  𝑦  ∧  ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) ) )  →  suc  𝑦  =  ∪  𝑥  ∈  𝐵 ( 𝐴  +o  𝑥 ) ) | 
						
							| 22 | 17 21 | eleqtrid | ⊢ ( ( ( 𝐴  +o  𝐵 )  =  suc  𝑦  ∧  ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) ) )  →  𝑦  ∈  ∪  𝑥  ∈  𝐵 ( 𝐴  +o  𝑥 ) ) | 
						
							| 23 |  | eliun | ⊢ ( 𝑦  ∈  ∪  𝑥  ∈  𝐵 ( 𝐴  +o  𝑥 )  ↔  ∃ 𝑥  ∈  𝐵 𝑦  ∈  ( 𝐴  +o  𝑥 ) ) | 
						
							| 24 | 22 23 | sylib | ⊢ ( ( ( 𝐴  +o  𝐵 )  =  suc  𝑦  ∧  ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) ) )  →  ∃ 𝑥  ∈  𝐵 𝑦  ∈  ( 𝐴  +o  𝑥 ) ) | 
						
							| 25 |  | onelon | ⊢ ( ( 𝐵  ∈  On  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  On ) | 
						
							| 26 | 1 25 | sylan | ⊢ ( ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  On ) | 
						
							| 27 |  | onnbtwn | ⊢ ( 𝑥  ∈  On  →  ¬  ( 𝑥  ∈  𝐵  ∧  𝐵  ∈  suc  𝑥 ) ) | 
						
							| 28 |  | imnan | ⊢ ( ( 𝑥  ∈  𝐵  →  ¬  𝐵  ∈  suc  𝑥 )  ↔  ¬  ( 𝑥  ∈  𝐵  ∧  𝐵  ∈  suc  𝑥 ) ) | 
						
							| 29 | 27 28 | sylibr | ⊢ ( 𝑥  ∈  On  →  ( 𝑥  ∈  𝐵  →  ¬  𝐵  ∈  suc  𝑥 ) ) | 
						
							| 30 | 29 | com12 | ⊢ ( 𝑥  ∈  𝐵  →  ( 𝑥  ∈  On  →  ¬  𝐵  ∈  suc  𝑥 ) ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥  ∈  On  →  ¬  𝐵  ∈  suc  𝑥 ) ) | 
						
							| 32 | 26 31 | mpd | ⊢ ( ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  ¬  𝐵  ∈  suc  𝑥 ) | 
						
							| 33 | 32 | ad2antrl | ⊢ ( ( 𝐴  ∈  On  ∧  ( ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  ( 𝐴  +o  𝑥 ) ) )  →  ¬  𝐵  ∈  suc  𝑥 ) | 
						
							| 34 |  | oacl | ⊢ ( ( 𝐴  ∈  On  ∧  𝑥  ∈  On )  →  ( 𝐴  +o  𝑥 )  ∈  On ) | 
						
							| 35 |  | eloni | ⊢ ( ( 𝐴  +o  𝑥 )  ∈  On  →  Ord  ( 𝐴  +o  𝑥 ) ) | 
						
							| 36 |  | ordsucelsuc | ⊢ ( Ord  ( 𝐴  +o  𝑥 )  →  ( 𝑦  ∈  ( 𝐴  +o  𝑥 )  ↔  suc  𝑦  ∈  suc  ( 𝐴  +o  𝑥 ) ) ) | 
						
							| 37 | 34 35 36 | 3syl | ⊢ ( ( 𝐴  ∈  On  ∧  𝑥  ∈  On )  →  ( 𝑦  ∈  ( 𝐴  +o  𝑥 )  ↔  suc  𝑦  ∈  suc  ( 𝐴  +o  𝑥 ) ) ) | 
						
							| 38 |  | oasuc | ⊢ ( ( 𝐴  ∈  On  ∧  𝑥  ∈  On )  →  ( 𝐴  +o  suc  𝑥 )  =  suc  ( 𝐴  +o  𝑥 ) ) | 
						
							| 39 | 38 | eleq2d | ⊢ ( ( 𝐴  ∈  On  ∧  𝑥  ∈  On )  →  ( suc  𝑦  ∈  ( 𝐴  +o  suc  𝑥 )  ↔  suc  𝑦  ∈  suc  ( 𝐴  +o  𝑥 ) ) ) | 
						
							| 40 | 37 39 | bitr4d | ⊢ ( ( 𝐴  ∈  On  ∧  𝑥  ∈  On )  →  ( 𝑦  ∈  ( 𝐴  +o  𝑥 )  ↔  suc  𝑦  ∈  ( 𝐴  +o  suc  𝑥 ) ) ) | 
						
							| 41 | 26 40 | sylan2 | ⊢ ( ( 𝐴  ∈  On  ∧  ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  ∧  𝑥  ∈  𝐵 ) )  →  ( 𝑦  ∈  ( 𝐴  +o  𝑥 )  ↔  suc  𝑦  ∈  ( 𝐴  +o  suc  𝑥 ) ) ) | 
						
							| 42 |  | eleq1 | ⊢ ( ( 𝐴  +o  𝐵 )  =  suc  𝑦  →  ( ( 𝐴  +o  𝐵 )  ∈  ( 𝐴  +o  suc  𝑥 )  ↔  suc  𝑦  ∈  ( 𝐴  +o  suc  𝑥 ) ) ) | 
						
							| 43 | 42 | bicomd | ⊢ ( ( 𝐴  +o  𝐵 )  =  suc  𝑦  →  ( suc  𝑦  ∈  ( 𝐴  +o  suc  𝑥 )  ↔  ( 𝐴  +o  𝐵 )  ∈  ( 𝐴  +o  suc  𝑥 ) ) ) | 
						
							| 44 | 41 43 | sylan9bbr | ⊢ ( ( ( 𝐴  +o  𝐵 )  =  suc  𝑦  ∧  ( 𝐴  ∈  On  ∧  ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  ∧  𝑥  ∈  𝐵 ) ) )  →  ( 𝑦  ∈  ( 𝐴  +o  𝑥 )  ↔  ( 𝐴  +o  𝐵 )  ∈  ( 𝐴  +o  suc  𝑥 ) ) ) | 
						
							| 45 | 1 | adantr | ⊢ ( ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  𝐵  ∈  On ) | 
						
							| 46 |  | onsucb | ⊢ ( 𝑥  ∈  On  ↔  suc  𝑥  ∈  On ) | 
						
							| 47 | 26 46 | sylib | ⊢ ( ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  suc  𝑥  ∈  On ) | 
						
							| 48 | 45 47 | jca | ⊢ ( ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  ( 𝐵  ∈  On  ∧  suc  𝑥  ∈  On ) ) | 
						
							| 49 |  | oaord | ⊢ ( ( 𝐵  ∈  On  ∧  suc  𝑥  ∈  On  ∧  𝐴  ∈  On )  →  ( 𝐵  ∈  suc  𝑥  ↔  ( 𝐴  +o  𝐵 )  ∈  ( 𝐴  +o  suc  𝑥 ) ) ) | 
						
							| 50 | 49 | 3expa | ⊢ ( ( ( 𝐵  ∈  On  ∧  suc  𝑥  ∈  On )  ∧  𝐴  ∈  On )  →  ( 𝐵  ∈  suc  𝑥  ↔  ( 𝐴  +o  𝐵 )  ∈  ( 𝐴  +o  suc  𝑥 ) ) ) | 
						
							| 51 | 48 50 | sylan | ⊢ ( ( ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  ∧  𝑥  ∈  𝐵 )  ∧  𝐴  ∈  On )  →  ( 𝐵  ∈  suc  𝑥  ↔  ( 𝐴  +o  𝐵 )  ∈  ( 𝐴  +o  suc  𝑥 ) ) ) | 
						
							| 52 | 51 | ancoms | ⊢ ( ( 𝐴  ∈  On  ∧  ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  ∧  𝑥  ∈  𝐵 ) )  →  ( 𝐵  ∈  suc  𝑥  ↔  ( 𝐴  +o  𝐵 )  ∈  ( 𝐴  +o  suc  𝑥 ) ) ) | 
						
							| 53 | 52 | adantl | ⊢ ( ( ( 𝐴  +o  𝐵 )  =  suc  𝑦  ∧  ( 𝐴  ∈  On  ∧  ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  ∧  𝑥  ∈  𝐵 ) ) )  →  ( 𝐵  ∈  suc  𝑥  ↔  ( 𝐴  +o  𝐵 )  ∈  ( 𝐴  +o  suc  𝑥 ) ) ) | 
						
							| 54 | 44 53 | bitr4d | ⊢ ( ( ( 𝐴  +o  𝐵 )  =  suc  𝑦  ∧  ( 𝐴  ∈  On  ∧  ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  ∧  𝑥  ∈  𝐵 ) ) )  →  ( 𝑦  ∈  ( 𝐴  +o  𝑥 )  ↔  𝐵  ∈  suc  𝑥 ) ) | 
						
							| 55 | 54 | biimpd | ⊢ ( ( ( 𝐴  +o  𝐵 )  =  suc  𝑦  ∧  ( 𝐴  ∈  On  ∧  ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  ∧  𝑥  ∈  𝐵 ) ) )  →  ( 𝑦  ∈  ( 𝐴  +o  𝑥 )  →  𝐵  ∈  suc  𝑥 ) ) | 
						
							| 56 | 55 | exp32 | ⊢ ( ( 𝐴  +o  𝐵 )  =  suc  𝑦  →  ( 𝐴  ∈  On  →  ( ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  ( 𝑦  ∈  ( 𝐴  +o  𝑥 )  →  𝐵  ∈  suc  𝑥 ) ) ) ) | 
						
							| 57 | 56 | com4l | ⊢ ( 𝐴  ∈  On  →  ( ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  ( 𝑦  ∈  ( 𝐴  +o  𝑥 )  →  ( ( 𝐴  +o  𝐵 )  =  suc  𝑦  →  𝐵  ∈  suc  𝑥 ) ) ) ) | 
						
							| 58 | 57 | imp32 | ⊢ ( ( 𝐴  ∈  On  ∧  ( ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  ( 𝐴  +o  𝑥 ) ) )  →  ( ( 𝐴  +o  𝐵 )  =  suc  𝑦  →  𝐵  ∈  suc  𝑥 ) ) | 
						
							| 59 | 33 58 | mtod | ⊢ ( ( 𝐴  ∈  On  ∧  ( ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  ( 𝐴  +o  𝑥 ) ) )  →  ¬  ( 𝐴  +o  𝐵 )  =  suc  𝑦 ) | 
						
							| 60 | 59 | exp44 | ⊢ ( 𝐴  ∈  On  →  ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  →  ( 𝑥  ∈  𝐵  →  ( 𝑦  ∈  ( 𝐴  +o  𝑥 )  →  ¬  ( 𝐴  +o  𝐵 )  =  suc  𝑦 ) ) ) ) | 
						
							| 61 | 60 | imp | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  →  ( 𝑥  ∈  𝐵  →  ( 𝑦  ∈  ( 𝐴  +o  𝑥 )  →  ¬  ( 𝐴  +o  𝐵 )  =  suc  𝑦 ) ) ) | 
						
							| 62 | 61 | rexlimdv | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  →  ( ∃ 𝑥  ∈  𝐵 𝑦  ∈  ( 𝐴  +o  𝑥 )  →  ¬  ( 𝐴  +o  𝐵 )  =  suc  𝑦 ) ) | 
						
							| 63 | 62 | adantl | ⊢ ( ( ( 𝐴  +o  𝐵 )  =  suc  𝑦  ∧  ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) ) )  →  ( ∃ 𝑥  ∈  𝐵 𝑦  ∈  ( 𝐴  +o  𝑥 )  →  ¬  ( 𝐴  +o  𝐵 )  =  suc  𝑦 ) ) | 
						
							| 64 | 24 63 | mpd | ⊢ ( ( ( 𝐴  +o  𝐵 )  =  suc  𝑦  ∧  ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) ) )  →  ¬  ( 𝐴  +o  𝐵 )  =  suc  𝑦 ) | 
						
							| 65 | 64 | expcom | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  →  ( ( 𝐴  +o  𝐵 )  =  suc  𝑦  →  ¬  ( 𝐴  +o  𝐵 )  =  suc  𝑦 ) ) | 
						
							| 66 | 65 | pm2.01d | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  →  ¬  ( 𝐴  +o  𝐵 )  =  suc  𝑦 ) | 
						
							| 67 | 66 | adantr | ⊢ ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  𝑦  ∈  On )  →  ¬  ( 𝐴  +o  𝐵 )  =  suc  𝑦 ) | 
						
							| 68 | 67 | nrexdv | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  →  ¬  ∃ 𝑦  ∈  On ( 𝐴  +o  𝐵 )  =  suc  𝑦 ) | 
						
							| 69 |  | ioran | ⊢ ( ¬  ( ( 𝐴  +o  𝐵 )  =  ∅  ∨  ∃ 𝑦  ∈  On ( 𝐴  +o  𝐵 )  =  suc  𝑦 )  ↔  ( ¬  ( 𝐴  +o  𝐵 )  =  ∅  ∧  ¬  ∃ 𝑦  ∈  On ( 𝐴  +o  𝐵 )  =  suc  𝑦 ) ) | 
						
							| 70 | 15 68 69 | sylanbrc | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  →  ¬  ( ( 𝐴  +o  𝐵 )  =  ∅  ∨  ∃ 𝑦  ∈  On ( 𝐴  +o  𝐵 )  =  suc  𝑦 ) ) | 
						
							| 71 |  | dflim3 | ⊢ ( Lim  ( 𝐴  +o  𝐵 )  ↔  ( Ord  ( 𝐴  +o  𝐵 )  ∧  ¬  ( ( 𝐴  +o  𝐵 )  =  ∅  ∨  ∃ 𝑦  ∈  On ( 𝐴  +o  𝐵 )  =  suc  𝑦 ) ) ) | 
						
							| 72 | 5 70 71 | sylanbrc | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  →  Lim  ( 𝐴  +o  𝐵 ) ) |