Step |
Hyp |
Ref |
Expression |
1 |
|
limelon |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → 𝐵 ∈ On ) |
2 |
|
oacl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) ∈ On ) |
3 |
|
eloni |
⊢ ( ( 𝐴 +o 𝐵 ) ∈ On → Ord ( 𝐴 +o 𝐵 ) ) |
4 |
2 3
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → Ord ( 𝐴 +o 𝐵 ) ) |
5 |
1 4
|
sylan2 |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → Ord ( 𝐴 +o 𝐵 ) ) |
6 |
|
0ellim |
⊢ ( Lim 𝐵 → ∅ ∈ 𝐵 ) |
7 |
|
n0i |
⊢ ( ∅ ∈ 𝐵 → ¬ 𝐵 = ∅ ) |
8 |
6 7
|
syl |
⊢ ( Lim 𝐵 → ¬ 𝐵 = ∅ ) |
9 |
8
|
ad2antll |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ¬ 𝐵 = ∅ ) |
10 |
|
oa00 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) = ∅ ↔ ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ) ) |
11 |
|
simpr |
⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → 𝐵 = ∅ ) |
12 |
10 11
|
syl6bi |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) = ∅ → 𝐵 = ∅ ) ) |
13 |
12
|
con3d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐵 = ∅ → ¬ ( 𝐴 +o 𝐵 ) = ∅ ) ) |
14 |
1 13
|
sylan2 |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( ¬ 𝐵 = ∅ → ¬ ( 𝐴 +o 𝐵 ) = ∅ ) ) |
15 |
9 14
|
mpd |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ¬ ( 𝐴 +o 𝐵 ) = ∅ ) |
16 |
|
vex |
⊢ 𝑦 ∈ V |
17 |
16
|
sucid |
⊢ 𝑦 ∈ suc 𝑦 |
18 |
|
oalim |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( 𝐴 +o 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 +o 𝑥 ) ) |
19 |
|
eqeq1 |
⊢ ( ( 𝐴 +o 𝐵 ) = suc 𝑦 → ( ( 𝐴 +o 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 +o 𝑥 ) ↔ suc 𝑦 = ∪ 𝑥 ∈ 𝐵 ( 𝐴 +o 𝑥 ) ) ) |
20 |
18 19
|
syl5ib |
⊢ ( ( 𝐴 +o 𝐵 ) = suc 𝑦 → ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → suc 𝑦 = ∪ 𝑥 ∈ 𝐵 ( 𝐴 +o 𝑥 ) ) ) |
21 |
20
|
imp |
⊢ ( ( ( 𝐴 +o 𝐵 ) = suc 𝑦 ∧ ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ) → suc 𝑦 = ∪ 𝑥 ∈ 𝐵 ( 𝐴 +o 𝑥 ) ) |
22 |
17 21
|
eleqtrid |
⊢ ( ( ( 𝐴 +o 𝐵 ) = suc 𝑦 ∧ ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ) → 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 ( 𝐴 +o 𝑥 ) ) |
23 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 ( 𝐴 +o 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐴 +o 𝑥 ) ) |
24 |
22 23
|
sylib |
⊢ ( ( ( 𝐴 +o 𝐵 ) = suc 𝑦 ∧ ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ) → ∃ 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐴 +o 𝑥 ) ) |
25 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) |
26 |
1 25
|
sylan |
⊢ ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) |
27 |
|
onnbtwn |
⊢ ( 𝑥 ∈ On → ¬ ( 𝑥 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝑥 ) ) |
28 |
|
imnan |
⊢ ( ( 𝑥 ∈ 𝐵 → ¬ 𝐵 ∈ suc 𝑥 ) ↔ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝑥 ) ) |
29 |
27 28
|
sylibr |
⊢ ( 𝑥 ∈ On → ( 𝑥 ∈ 𝐵 → ¬ 𝐵 ∈ suc 𝑥 ) ) |
30 |
29
|
com12 |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ On → ¬ 𝐵 ∈ suc 𝑥 ) ) |
31 |
30
|
adantl |
⊢ ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ On → ¬ 𝐵 ∈ suc 𝑥 ) ) |
32 |
26 31
|
mpd |
⊢ ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ¬ 𝐵 ∈ suc 𝑥 ) |
33 |
32
|
ad2antrl |
⊢ ( ( 𝐴 ∈ On ∧ ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 +o 𝑥 ) ) ) → ¬ 𝐵 ∈ suc 𝑥 ) |
34 |
|
oacl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 +o 𝑥 ) ∈ On ) |
35 |
|
eloni |
⊢ ( ( 𝐴 +o 𝑥 ) ∈ On → Ord ( 𝐴 +o 𝑥 ) ) |
36 |
|
ordsucelsuc |
⊢ ( Ord ( 𝐴 +o 𝑥 ) → ( 𝑦 ∈ ( 𝐴 +o 𝑥 ) ↔ suc 𝑦 ∈ suc ( 𝐴 +o 𝑥 ) ) ) |
37 |
34 35 36
|
3syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑦 ∈ ( 𝐴 +o 𝑥 ) ↔ suc 𝑦 ∈ suc ( 𝐴 +o 𝑥 ) ) ) |
38 |
|
oasuc |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 +o suc 𝑥 ) = suc ( 𝐴 +o 𝑥 ) ) |
39 |
38
|
eleq2d |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( suc 𝑦 ∈ ( 𝐴 +o suc 𝑥 ) ↔ suc 𝑦 ∈ suc ( 𝐴 +o 𝑥 ) ) ) |
40 |
37 39
|
bitr4d |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑦 ∈ ( 𝐴 +o 𝑥 ) ↔ suc 𝑦 ∈ ( 𝐴 +o suc 𝑥 ) ) ) |
41 |
26 40
|
sylan2 |
⊢ ( ( 𝐴 ∈ On ∧ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑦 ∈ ( 𝐴 +o 𝑥 ) ↔ suc 𝑦 ∈ ( 𝐴 +o suc 𝑥 ) ) ) |
42 |
|
eleq1 |
⊢ ( ( 𝐴 +o 𝐵 ) = suc 𝑦 → ( ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o suc 𝑥 ) ↔ suc 𝑦 ∈ ( 𝐴 +o suc 𝑥 ) ) ) |
43 |
42
|
bicomd |
⊢ ( ( 𝐴 +o 𝐵 ) = suc 𝑦 → ( suc 𝑦 ∈ ( 𝐴 +o suc 𝑥 ) ↔ ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o suc 𝑥 ) ) ) |
44 |
41 43
|
sylan9bbr |
⊢ ( ( ( 𝐴 +o 𝐵 ) = suc 𝑦 ∧ ( 𝐴 ∈ On ∧ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ) ) → ( 𝑦 ∈ ( 𝐴 +o 𝑥 ) ↔ ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o suc 𝑥 ) ) ) |
45 |
1
|
adantr |
⊢ ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝐵 ∈ On ) |
46 |
|
sucelon |
⊢ ( 𝑥 ∈ On ↔ suc 𝑥 ∈ On ) |
47 |
26 46
|
sylib |
⊢ ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → suc 𝑥 ∈ On ) |
48 |
45 47
|
jca |
⊢ ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐵 ∈ On ∧ suc 𝑥 ∈ On ) ) |
49 |
|
oaord |
⊢ ( ( 𝐵 ∈ On ∧ suc 𝑥 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 ∈ suc 𝑥 ↔ ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o suc 𝑥 ) ) ) |
50 |
49
|
3expa |
⊢ ( ( ( 𝐵 ∈ On ∧ suc 𝑥 ∈ On ) ∧ 𝐴 ∈ On ) → ( 𝐵 ∈ suc 𝑥 ↔ ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o suc 𝑥 ) ) ) |
51 |
48 50
|
sylan |
⊢ ( ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝐴 ∈ On ) → ( 𝐵 ∈ suc 𝑥 ↔ ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o suc 𝑥 ) ) ) |
52 |
51
|
ancoms |
⊢ ( ( 𝐴 ∈ On ∧ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝐵 ∈ suc 𝑥 ↔ ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o suc 𝑥 ) ) ) |
53 |
52
|
adantl |
⊢ ( ( ( 𝐴 +o 𝐵 ) = suc 𝑦 ∧ ( 𝐴 ∈ On ∧ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ) ) → ( 𝐵 ∈ suc 𝑥 ↔ ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o suc 𝑥 ) ) ) |
54 |
44 53
|
bitr4d |
⊢ ( ( ( 𝐴 +o 𝐵 ) = suc 𝑦 ∧ ( 𝐴 ∈ On ∧ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ) ) → ( 𝑦 ∈ ( 𝐴 +o 𝑥 ) ↔ 𝐵 ∈ suc 𝑥 ) ) |
55 |
54
|
biimpd |
⊢ ( ( ( 𝐴 +o 𝐵 ) = suc 𝑦 ∧ ( 𝐴 ∈ On ∧ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ) ) → ( 𝑦 ∈ ( 𝐴 +o 𝑥 ) → 𝐵 ∈ suc 𝑥 ) ) |
56 |
55
|
exp32 |
⊢ ( ( 𝐴 +o 𝐵 ) = suc 𝑦 → ( 𝐴 ∈ On → ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑦 ∈ ( 𝐴 +o 𝑥 ) → 𝐵 ∈ suc 𝑥 ) ) ) ) |
57 |
56
|
com4l |
⊢ ( 𝐴 ∈ On → ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑦 ∈ ( 𝐴 +o 𝑥 ) → ( ( 𝐴 +o 𝐵 ) = suc 𝑦 → 𝐵 ∈ suc 𝑥 ) ) ) ) |
58 |
57
|
imp32 |
⊢ ( ( 𝐴 ∈ On ∧ ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 +o 𝑥 ) ) ) → ( ( 𝐴 +o 𝐵 ) = suc 𝑦 → 𝐵 ∈ suc 𝑥 ) ) |
59 |
33 58
|
mtod |
⊢ ( ( 𝐴 ∈ On ∧ ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 +o 𝑥 ) ) ) → ¬ ( 𝐴 +o 𝐵 ) = suc 𝑦 ) |
60 |
59
|
exp44 |
⊢ ( 𝐴 ∈ On → ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → ( 𝑥 ∈ 𝐵 → ( 𝑦 ∈ ( 𝐴 +o 𝑥 ) → ¬ ( 𝐴 +o 𝐵 ) = suc 𝑦 ) ) ) ) |
61 |
60
|
imp |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( 𝑥 ∈ 𝐵 → ( 𝑦 ∈ ( 𝐴 +o 𝑥 ) → ¬ ( 𝐴 +o 𝐵 ) = suc 𝑦 ) ) ) |
62 |
61
|
rexlimdv |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( ∃ 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐴 +o 𝑥 ) → ¬ ( 𝐴 +o 𝐵 ) = suc 𝑦 ) ) |
63 |
62
|
adantl |
⊢ ( ( ( 𝐴 +o 𝐵 ) = suc 𝑦 ∧ ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ) → ( ∃ 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐴 +o 𝑥 ) → ¬ ( 𝐴 +o 𝐵 ) = suc 𝑦 ) ) |
64 |
24 63
|
mpd |
⊢ ( ( ( 𝐴 +o 𝐵 ) = suc 𝑦 ∧ ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ) → ¬ ( 𝐴 +o 𝐵 ) = suc 𝑦 ) |
65 |
64
|
expcom |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( ( 𝐴 +o 𝐵 ) = suc 𝑦 → ¬ ( 𝐴 +o 𝐵 ) = suc 𝑦 ) ) |
66 |
65
|
pm2.01d |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ¬ ( 𝐴 +o 𝐵 ) = suc 𝑦 ) |
67 |
66
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ 𝑦 ∈ On ) → ¬ ( 𝐴 +o 𝐵 ) = suc 𝑦 ) |
68 |
67
|
nrexdv |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ¬ ∃ 𝑦 ∈ On ( 𝐴 +o 𝐵 ) = suc 𝑦 ) |
69 |
|
ioran |
⊢ ( ¬ ( ( 𝐴 +o 𝐵 ) = ∅ ∨ ∃ 𝑦 ∈ On ( 𝐴 +o 𝐵 ) = suc 𝑦 ) ↔ ( ¬ ( 𝐴 +o 𝐵 ) = ∅ ∧ ¬ ∃ 𝑦 ∈ On ( 𝐴 +o 𝐵 ) = suc 𝑦 ) ) |
70 |
15 68 69
|
sylanbrc |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ¬ ( ( 𝐴 +o 𝐵 ) = ∅ ∨ ∃ 𝑦 ∈ On ( 𝐴 +o 𝐵 ) = suc 𝑦 ) ) |
71 |
|
dflim3 |
⊢ ( Lim ( 𝐴 +o 𝐵 ) ↔ ( Ord ( 𝐴 +o 𝐵 ) ∧ ¬ ( ( 𝐴 +o 𝐵 ) = ∅ ∨ ∃ 𝑦 ∈ On ( 𝐴 +o 𝐵 ) = suc 𝑦 ) ) ) |
72 |
5 70 71
|
sylanbrc |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → Lim ( 𝐴 +o 𝐵 ) ) |