Step |
Hyp |
Ref |
Expression |
1 |
|
omex |
⊢ ω ∈ V |
2 |
1
|
sucid |
⊢ ω ∈ suc ω |
3 |
|
omelon |
⊢ ω ∈ On |
4 |
|
1onn |
⊢ 1o ∈ ω |
5 |
|
oaabslem |
⊢ ( ( ω ∈ On ∧ 1o ∈ ω ) → ( 1o +o ω ) = ω ) |
6 |
3 4 5
|
mp2an |
⊢ ( 1o +o ω ) = ω |
7 |
|
oa1suc |
⊢ ( ω ∈ On → ( ω +o 1o ) = suc ω ) |
8 |
3 7
|
ax-mp |
⊢ ( ω +o 1o ) = suc ω |
9 |
2 6 8
|
3eltr4i |
⊢ ( 1o +o ω ) ∈ ( ω +o 1o ) |
10 |
|
1on |
⊢ 1o ∈ On |
11 |
|
oacl |
⊢ ( ( 1o ∈ On ∧ ω ∈ On ) → ( 1o +o ω ) ∈ On ) |
12 |
10 3 11
|
mp2an |
⊢ ( 1o +o ω ) ∈ On |
13 |
|
oacl |
⊢ ( ( ω ∈ On ∧ 1o ∈ On ) → ( ω +o 1o ) ∈ On ) |
14 |
3 10 13
|
mp2an |
⊢ ( ω +o 1o ) ∈ On |
15 |
|
onelpss |
⊢ ( ( ( 1o +o ω ) ∈ On ∧ ( ω +o 1o ) ∈ On ) → ( ( 1o +o ω ) ∈ ( ω +o 1o ) ↔ ( ( 1o +o ω ) ⊆ ( ω +o 1o ) ∧ ( 1o +o ω ) ≠ ( ω +o 1o ) ) ) ) |
16 |
12 14 15
|
mp2an |
⊢ ( ( 1o +o ω ) ∈ ( ω +o 1o ) ↔ ( ( 1o +o ω ) ⊆ ( ω +o 1o ) ∧ ( 1o +o ω ) ≠ ( ω +o 1o ) ) ) |
17 |
16
|
simprbi |
⊢ ( ( 1o +o ω ) ∈ ( ω +o 1o ) → ( 1o +o ω ) ≠ ( ω +o 1o ) ) |
18 |
9 17
|
ax-mp |
⊢ ( 1o +o ω ) ≠ ( ω +o 1o ) |