| Step | Hyp | Ref | Expression | 
						
							| 1 |  | omex | ⊢ ω  ∈  V | 
						
							| 2 | 1 | sucid | ⊢ ω  ∈  suc  ω | 
						
							| 3 |  | omelon | ⊢ ω  ∈  On | 
						
							| 4 |  | 1onn | ⊢ 1o  ∈  ω | 
						
							| 5 |  | oaabslem | ⊢ ( ( ω  ∈  On  ∧  1o  ∈  ω )  →  ( 1o  +o  ω )  =  ω ) | 
						
							| 6 | 3 4 5 | mp2an | ⊢ ( 1o  +o  ω )  =  ω | 
						
							| 7 |  | oa1suc | ⊢ ( ω  ∈  On  →  ( ω  +o  1o )  =  suc  ω ) | 
						
							| 8 | 3 7 | ax-mp | ⊢ ( ω  +o  1o )  =  suc  ω | 
						
							| 9 | 2 6 8 | 3eltr4i | ⊢ ( 1o  +o  ω )  ∈  ( ω  +o  1o ) | 
						
							| 10 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 11 |  | oacl | ⊢ ( ( 1o  ∈  On  ∧  ω  ∈  On )  →  ( 1o  +o  ω )  ∈  On ) | 
						
							| 12 | 10 3 11 | mp2an | ⊢ ( 1o  +o  ω )  ∈  On | 
						
							| 13 |  | oacl | ⊢ ( ( ω  ∈  On  ∧  1o  ∈  On )  →  ( ω  +o  1o )  ∈  On ) | 
						
							| 14 | 3 10 13 | mp2an | ⊢ ( ω  +o  1o )  ∈  On | 
						
							| 15 |  | onelpss | ⊢ ( ( ( 1o  +o  ω )  ∈  On  ∧  ( ω  +o  1o )  ∈  On )  →  ( ( 1o  +o  ω )  ∈  ( ω  +o  1o )  ↔  ( ( 1o  +o  ω )  ⊆  ( ω  +o  1o )  ∧  ( 1o  +o  ω )  ≠  ( ω  +o  1o ) ) ) ) | 
						
							| 16 | 12 14 15 | mp2an | ⊢ ( ( 1o  +o  ω )  ∈  ( ω  +o  1o )  ↔  ( ( 1o  +o  ω )  ⊆  ( ω  +o  1o )  ∧  ( 1o  +o  ω )  ≠  ( ω  +o  1o ) ) ) | 
						
							| 17 | 16 | simprbi | ⊢ ( ( 1o  +o  ω )  ∈  ( ω  +o  1o )  →  ( 1o  +o  ω )  ≠  ( ω  +o  1o ) ) | 
						
							| 18 | 9 17 | ax-mp | ⊢ ( 1o  +o  ω )  ≠  ( ω  +o  1o ) |