Metamath Proof Explorer


Theorem oaordex

Description: Existence theorem for ordering of ordinal sum. Similar to Proposition 4.34(f) of Mendelson p. 266 and its converse. (Contributed by NM, 12-Dec-2004)

Ref Expression
Assertion oaordex ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 ↔ ∃ 𝑥 ∈ On ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 onelss ( 𝐵 ∈ On → ( 𝐴𝐵𝐴𝐵 ) )
2 1 adantl ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵𝐴𝐵 ) )
3 oawordex ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 ↔ ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) )
4 2 3 sylibd ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 → ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) )
5 oaord1 ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( ∅ ∈ 𝑥𝐴 ∈ ( 𝐴 +o 𝑥 ) ) )
6 eleq2 ( ( 𝐴 +o 𝑥 ) = 𝐵 → ( 𝐴 ∈ ( 𝐴 +o 𝑥 ) ↔ 𝐴𝐵 ) )
7 5 6 sylan9bb ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → ( ∅ ∈ 𝑥𝐴𝐵 ) )
8 7 biimprcd ( 𝐴𝐵 → ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → ∅ ∈ 𝑥 ) )
9 8 exp4c ( 𝐴𝐵 → ( 𝐴 ∈ On → ( 𝑥 ∈ On → ( ( 𝐴 +o 𝑥 ) = 𝐵 → ∅ ∈ 𝑥 ) ) ) )
10 9 com12 ( 𝐴 ∈ On → ( 𝐴𝐵 → ( 𝑥 ∈ On → ( ( 𝐴 +o 𝑥 ) = 𝐵 → ∅ ∈ 𝑥 ) ) ) )
11 10 imp4b ( ( 𝐴 ∈ On ∧ 𝐴𝐵 ) → ( ( 𝑥 ∈ On ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → ∅ ∈ 𝑥 ) )
12 simpr ( ( 𝑥 ∈ On ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → ( 𝐴 +o 𝑥 ) = 𝐵 )
13 11 12 jca2 ( ( 𝐴 ∈ On ∧ 𝐴𝐵 ) → ( ( 𝑥 ∈ On ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) )
14 13 expd ( ( 𝐴 ∈ On ∧ 𝐴𝐵 ) → ( 𝑥 ∈ On → ( ( 𝐴 +o 𝑥 ) = 𝐵 → ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) )
15 14 reximdvai ( ( 𝐴 ∈ On ∧ 𝐴𝐵 ) → ( ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 → ∃ 𝑥 ∈ On ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) )
16 15 ex ( 𝐴 ∈ On → ( 𝐴𝐵 → ( ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 → ∃ 𝑥 ∈ On ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) )
17 16 adantr ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 → ( ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 → ∃ 𝑥 ∈ On ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) )
18 4 17 mpdd ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 → ∃ 𝑥 ∈ On ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) )
19 7 biimpd ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → ( ∅ ∈ 𝑥𝐴𝐵 ) )
20 19 exp31 ( 𝐴 ∈ On → ( 𝑥 ∈ On → ( ( 𝐴 +o 𝑥 ) = 𝐵 → ( ∅ ∈ 𝑥𝐴𝐵 ) ) ) )
21 20 com34 ( 𝐴 ∈ On → ( 𝑥 ∈ On → ( ∅ ∈ 𝑥 → ( ( 𝐴 +o 𝑥 ) = 𝐵𝐴𝐵 ) ) ) )
22 21 imp4a ( 𝐴 ∈ On → ( 𝑥 ∈ On → ( ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → 𝐴𝐵 ) ) )
23 22 rexlimdv ( 𝐴 ∈ On → ( ∃ 𝑥 ∈ On ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → 𝐴𝐵 ) )
24 23 adantr ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∃ 𝑥 ∈ On ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → 𝐴𝐵 ) )
25 18 24 impbid ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 ↔ ∃ 𝑥 ∈ On ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) )