Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑧 = ∅ → ( 𝐴 +o 𝑧 ) = ( 𝐴 +o ∅ ) ) |
2 |
|
mpteq1 |
⊢ ( 𝑧 = ∅ → ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) = ( 𝑥 ∈ ∅ ↦ ( 𝐴 +o 𝑥 ) ) ) |
3 |
|
mpt0 |
⊢ ( 𝑥 ∈ ∅ ↦ ( 𝐴 +o 𝑥 ) ) = ∅ |
4 |
2 3
|
eqtrdi |
⊢ ( 𝑧 = ∅ → ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) = ∅ ) |
5 |
4
|
rneqd |
⊢ ( 𝑧 = ∅ → ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) = ran ∅ ) |
6 |
|
rn0 |
⊢ ran ∅ = ∅ |
7 |
5 6
|
eqtrdi |
⊢ ( 𝑧 = ∅ → ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) = ∅ ) |
8 |
7
|
uneq2d |
⊢ ( 𝑧 = ∅ → ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) = ( 𝐴 ∪ ∅ ) ) |
9 |
1 8
|
eqeq12d |
⊢ ( 𝑧 = ∅ → ( ( 𝐴 +o 𝑧 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) ↔ ( 𝐴 +o ∅ ) = ( 𝐴 ∪ ∅ ) ) ) |
10 |
|
oveq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝐴 +o 𝑧 ) = ( 𝐴 +o 𝑤 ) ) |
11 |
|
mpteq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) = ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) |
12 |
11
|
rneqd |
⊢ ( 𝑧 = 𝑤 → ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) = ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) |
13 |
12
|
uneq2d |
⊢ ( 𝑧 = 𝑤 → ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
14 |
10 13
|
eqeq12d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝐴 +o 𝑧 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) ↔ ( 𝐴 +o 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) ) |
15 |
|
oveq2 |
⊢ ( 𝑧 = suc 𝑤 → ( 𝐴 +o 𝑧 ) = ( 𝐴 +o suc 𝑤 ) ) |
16 |
|
mpteq1 |
⊢ ( 𝑧 = suc 𝑤 → ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) = ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) |
17 |
16
|
rneqd |
⊢ ( 𝑧 = suc 𝑤 → ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) = ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) |
18 |
17
|
uneq2d |
⊢ ( 𝑧 = suc 𝑤 → ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) = ( 𝐴 ∪ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
19 |
15 18
|
eqeq12d |
⊢ ( 𝑧 = suc 𝑤 → ( ( 𝐴 +o 𝑧 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) ↔ ( 𝐴 +o suc 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) ) |
20 |
|
oveq2 |
⊢ ( 𝑧 = 𝐵 → ( 𝐴 +o 𝑧 ) = ( 𝐴 +o 𝐵 ) ) |
21 |
|
mpteq1 |
⊢ ( 𝑧 = 𝐵 → ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) |
22 |
21
|
rneqd |
⊢ ( 𝑧 = 𝐵 → ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) = ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) |
23 |
22
|
uneq2d |
⊢ ( 𝑧 = 𝐵 → ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
24 |
20 23
|
eqeq12d |
⊢ ( 𝑧 = 𝐵 → ( ( 𝐴 +o 𝑧 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) ↔ ( 𝐴 +o 𝐵 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) ) ) |
25 |
|
oa0 |
⊢ ( 𝐴 ∈ On → ( 𝐴 +o ∅ ) = 𝐴 ) |
26 |
|
un0 |
⊢ ( 𝐴 ∪ ∅ ) = 𝐴 |
27 |
25 26
|
eqtr4di |
⊢ ( 𝐴 ∈ On → ( 𝐴 +o ∅ ) = ( 𝐴 ∪ ∅ ) ) |
28 |
|
uneq1 |
⊢ ( ( 𝐴 +o 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) → ( ( 𝐴 +o 𝑤 ) ∪ { ( 𝐴 +o 𝑤 ) } ) = ( ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ∪ { ( 𝐴 +o 𝑤 ) } ) ) |
29 |
|
unass |
⊢ ( ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ∪ { ( 𝐴 +o 𝑤 ) } ) = ( 𝐴 ∪ ( ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ∪ { ( 𝐴 +o 𝑤 ) } ) ) |
30 |
|
rexun |
⊢ ( ∃ 𝑥 ∈ ( 𝑤 ∪ { 𝑤 } ) 𝑦 = ( 𝐴 +o 𝑥 ) ↔ ( ∃ 𝑥 ∈ 𝑤 𝑦 = ( 𝐴 +o 𝑥 ) ∨ ∃ 𝑥 ∈ { 𝑤 } 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
31 |
|
df-suc |
⊢ suc 𝑤 = ( 𝑤 ∪ { 𝑤 } ) |
32 |
31
|
rexeqi |
⊢ ( ∃ 𝑥 ∈ suc 𝑤 𝑦 = ( 𝐴 +o 𝑥 ) ↔ ∃ 𝑥 ∈ ( 𝑤 ∪ { 𝑤 } ) 𝑦 = ( 𝐴 +o 𝑥 ) ) |
33 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) = ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) |
34 |
33
|
elrnmpt |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝑤 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
35 |
34
|
elv |
⊢ ( 𝑦 ∈ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝑤 𝑦 = ( 𝐴 +o 𝑥 ) ) |
36 |
|
velsn |
⊢ ( 𝑦 ∈ { ( 𝐴 +o 𝑤 ) } ↔ 𝑦 = ( 𝐴 +o 𝑤 ) ) |
37 |
|
vex |
⊢ 𝑤 ∈ V |
38 |
|
oveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝑤 ) ) |
39 |
38
|
eqeq2d |
⊢ ( 𝑥 = 𝑤 → ( 𝑦 = ( 𝐴 +o 𝑥 ) ↔ 𝑦 = ( 𝐴 +o 𝑤 ) ) ) |
40 |
37 39
|
rexsn |
⊢ ( ∃ 𝑥 ∈ { 𝑤 } 𝑦 = ( 𝐴 +o 𝑥 ) ↔ 𝑦 = ( 𝐴 +o 𝑤 ) ) |
41 |
36 40
|
bitr4i |
⊢ ( 𝑦 ∈ { ( 𝐴 +o 𝑤 ) } ↔ ∃ 𝑥 ∈ { 𝑤 } 𝑦 = ( 𝐴 +o 𝑥 ) ) |
42 |
35 41
|
orbi12i |
⊢ ( ( 𝑦 ∈ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ∨ 𝑦 ∈ { ( 𝐴 +o 𝑤 ) } ) ↔ ( ∃ 𝑥 ∈ 𝑤 𝑦 = ( 𝐴 +o 𝑥 ) ∨ ∃ 𝑥 ∈ { 𝑤 } 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
43 |
30 32 42
|
3bitr4i |
⊢ ( ∃ 𝑥 ∈ suc 𝑤 𝑦 = ( 𝐴 +o 𝑥 ) ↔ ( 𝑦 ∈ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ∨ 𝑦 ∈ { ( 𝐴 +o 𝑤 ) } ) ) |
44 |
|
eqid |
⊢ ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) = ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) |
45 |
|
ovex |
⊢ ( 𝐴 +o 𝑥 ) ∈ V |
46 |
44 45
|
elrnmpti |
⊢ ( 𝑦 ∈ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑥 ∈ suc 𝑤 𝑦 = ( 𝐴 +o 𝑥 ) ) |
47 |
|
elun |
⊢ ( 𝑦 ∈ ( ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ∪ { ( 𝐴 +o 𝑤 ) } ) ↔ ( 𝑦 ∈ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ∨ 𝑦 ∈ { ( 𝐴 +o 𝑤 ) } ) ) |
48 |
43 46 47
|
3bitr4i |
⊢ ( 𝑦 ∈ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ↔ 𝑦 ∈ ( ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ∪ { ( 𝐴 +o 𝑤 ) } ) ) |
49 |
48
|
eqriv |
⊢ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) = ( ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ∪ { ( 𝐴 +o 𝑤 ) } ) |
50 |
49
|
uneq2i |
⊢ ( 𝐴 ∪ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) = ( 𝐴 ∪ ( ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ∪ { ( 𝐴 +o 𝑤 ) } ) ) |
51 |
29 50
|
eqtr4i |
⊢ ( ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ∪ { ( 𝐴 +o 𝑤 ) } ) = ( 𝐴 ∪ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) |
52 |
28 51
|
eqtrdi |
⊢ ( ( 𝐴 +o 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) → ( ( 𝐴 +o 𝑤 ) ∪ { ( 𝐴 +o 𝑤 ) } ) = ( 𝐴 ∪ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
53 |
|
oasuc |
⊢ ( ( 𝐴 ∈ On ∧ 𝑤 ∈ On ) → ( 𝐴 +o suc 𝑤 ) = suc ( 𝐴 +o 𝑤 ) ) |
54 |
|
df-suc |
⊢ suc ( 𝐴 +o 𝑤 ) = ( ( 𝐴 +o 𝑤 ) ∪ { ( 𝐴 +o 𝑤 ) } ) |
55 |
53 54
|
eqtrdi |
⊢ ( ( 𝐴 ∈ On ∧ 𝑤 ∈ On ) → ( 𝐴 +o suc 𝑤 ) = ( ( 𝐴 +o 𝑤 ) ∪ { ( 𝐴 +o 𝑤 ) } ) ) |
56 |
55
|
eqeq1d |
⊢ ( ( 𝐴 ∈ On ∧ 𝑤 ∈ On ) → ( ( 𝐴 +o suc 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ↔ ( ( 𝐴 +o 𝑤 ) ∪ { ( 𝐴 +o 𝑤 ) } ) = ( 𝐴 ∪ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) ) |
57 |
52 56
|
syl5ibr |
⊢ ( ( 𝐴 ∈ On ∧ 𝑤 ∈ On ) → ( ( 𝐴 +o 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) → ( 𝐴 +o suc 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) ) |
58 |
57
|
expcom |
⊢ ( 𝑤 ∈ On → ( 𝐴 ∈ On → ( ( 𝐴 +o 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) → ( 𝐴 +o suc 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) ) ) |
59 |
|
vex |
⊢ 𝑧 ∈ V |
60 |
|
oalim |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑧 ∈ V ∧ Lim 𝑧 ) ) → ( 𝐴 +o 𝑧 ) = ∪ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) ) |
61 |
59 60
|
mpanr1 |
⊢ ( ( 𝐴 ∈ On ∧ Lim 𝑧 ) → ( 𝐴 +o 𝑧 ) = ∪ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) ) |
62 |
61
|
ancoms |
⊢ ( ( Lim 𝑧 ∧ 𝐴 ∈ On ) → ( 𝐴 +o 𝑧 ) = ∪ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) ) |
63 |
62
|
adantr |
⊢ ( ( ( Lim 𝑧 ∧ 𝐴 ∈ On ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) → ( 𝐴 +o 𝑧 ) = ∪ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) ) |
64 |
|
iuneq2 |
⊢ ( ∀ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) → ∪ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) = ∪ 𝑤 ∈ 𝑧 ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
65 |
64
|
adantl |
⊢ ( ( ( Lim 𝑧 ∧ 𝐴 ∈ On ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) → ∪ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) = ∪ 𝑤 ∈ 𝑧 ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
66 |
|
iunun |
⊢ ∪ 𝑤 ∈ 𝑧 ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) = ( ∪ 𝑤 ∈ 𝑧 𝐴 ∪ ∪ 𝑤 ∈ 𝑧 ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) |
67 |
|
0ellim |
⊢ ( Lim 𝑧 → ∅ ∈ 𝑧 ) |
68 |
|
ne0i |
⊢ ( ∅ ∈ 𝑧 → 𝑧 ≠ ∅ ) |
69 |
|
iunconst |
⊢ ( 𝑧 ≠ ∅ → ∪ 𝑤 ∈ 𝑧 𝐴 = 𝐴 ) |
70 |
67 68 69
|
3syl |
⊢ ( Lim 𝑧 → ∪ 𝑤 ∈ 𝑧 𝐴 = 𝐴 ) |
71 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝑤 𝑦 = ( 𝐴 +o 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
72 |
35 71
|
bitri |
⊢ ( 𝑦 ∈ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
73 |
72
|
rexbii |
⊢ ( ∃ 𝑤 ∈ 𝑧 𝑦 ∈ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑤 ∈ 𝑧 ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
74 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ 𝑧 ↔ ∃ 𝑤 ∈ 𝑧 𝑥 ∈ 𝑤 ) |
75 |
74
|
anbi1i |
⊢ ( ( 𝑥 ∈ ∪ 𝑧 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ↔ ( ∃ 𝑤 ∈ 𝑧 𝑥 ∈ 𝑤 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
76 |
|
r19.41v |
⊢ ( ∃ 𝑤 ∈ 𝑧 ( 𝑥 ∈ 𝑤 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ↔ ( ∃ 𝑤 ∈ 𝑧 𝑥 ∈ 𝑤 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
77 |
75 76
|
bitr4i |
⊢ ( ( 𝑥 ∈ ∪ 𝑧 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑤 ∈ 𝑧 ( 𝑥 ∈ 𝑤 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
78 |
77
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ ∪ 𝑧 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑥 ∃ 𝑤 ∈ 𝑧 ( 𝑥 ∈ 𝑤 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
79 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ ∪ 𝑧 𝑦 = ( 𝐴 +o 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 ∈ ∪ 𝑧 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
80 |
|
rexcom4 |
⊢ ( ∃ 𝑤 ∈ 𝑧 ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑥 ∃ 𝑤 ∈ 𝑧 ( 𝑥 ∈ 𝑤 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
81 |
78 79 80
|
3bitr4i |
⊢ ( ∃ 𝑥 ∈ ∪ 𝑧 𝑦 = ( 𝐴 +o 𝑥 ) ↔ ∃ 𝑤 ∈ 𝑧 ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
82 |
73 81
|
bitr4i |
⊢ ( ∃ 𝑤 ∈ 𝑧 𝑦 ∈ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑥 ∈ ∪ 𝑧 𝑦 = ( 𝐴 +o 𝑥 ) ) |
83 |
|
limuni |
⊢ ( Lim 𝑧 → 𝑧 = ∪ 𝑧 ) |
84 |
83
|
rexeqdv |
⊢ ( Lim 𝑧 → ( ∃ 𝑥 ∈ 𝑧 𝑦 = ( 𝐴 +o 𝑥 ) ↔ ∃ 𝑥 ∈ ∪ 𝑧 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
85 |
82 84
|
bitr4id |
⊢ ( Lim 𝑧 → ( ∃ 𝑤 ∈ 𝑧 𝑦 ∈ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝑧 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
86 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑤 ∈ 𝑧 ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑤 ∈ 𝑧 𝑦 ∈ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) |
87 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) = ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) |
88 |
87 45
|
elrnmpti |
⊢ ( 𝑦 ∈ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝑧 𝑦 = ( 𝐴 +o 𝑥 ) ) |
89 |
85 86 88
|
3bitr4g |
⊢ ( Lim 𝑧 → ( 𝑦 ∈ ∪ 𝑤 ∈ 𝑧 ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ↔ 𝑦 ∈ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
90 |
89
|
eqrdv |
⊢ ( Lim 𝑧 → ∪ 𝑤 ∈ 𝑧 ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) = ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) |
91 |
70 90
|
uneq12d |
⊢ ( Lim 𝑧 → ( ∪ 𝑤 ∈ 𝑧 𝐴 ∪ ∪ 𝑤 ∈ 𝑧 ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
92 |
66 91
|
eqtrid |
⊢ ( Lim 𝑧 → ∪ 𝑤 ∈ 𝑧 ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
93 |
92
|
ad2antrr |
⊢ ( ( ( Lim 𝑧 ∧ 𝐴 ∈ On ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) → ∪ 𝑤 ∈ 𝑧 ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
94 |
63 65 93
|
3eqtrd |
⊢ ( ( ( Lim 𝑧 ∧ 𝐴 ∈ On ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) → ( 𝐴 +o 𝑧 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
95 |
94
|
exp31 |
⊢ ( Lim 𝑧 → ( 𝐴 ∈ On → ( ∀ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) → ( 𝐴 +o 𝑧 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) ) ) ) |
96 |
9 14 19 24 27 58 95
|
tfinds3 |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ On → ( 𝐴 +o 𝐵 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) ) ) |
97 |
96
|
impcom |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |