Step |
Hyp |
Ref |
Expression |
1 |
|
rdgsuc |
⊢ ( 𝐵 ∈ On → ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) ) |
2 |
1
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) ) |
3 |
|
suceloni |
⊢ ( 𝐵 ∈ On → suc 𝐵 ∈ On ) |
4 |
|
oav |
⊢ ( ( 𝐴 ∈ On ∧ suc 𝐵 ∈ On ) → ( 𝐴 +o suc 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ suc 𝐵 ) ) |
5 |
3 4
|
sylan2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o suc 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ suc 𝐵 ) ) |
6 |
|
ovex |
⊢ ( 𝐴 +o 𝐵 ) ∈ V |
7 |
|
suceq |
⊢ ( 𝑥 = ( 𝐴 +o 𝐵 ) → suc 𝑥 = suc ( 𝐴 +o 𝐵 ) ) |
8 |
|
eqid |
⊢ ( 𝑥 ∈ V ↦ suc 𝑥 ) = ( 𝑥 ∈ V ↦ suc 𝑥 ) |
9 |
6
|
sucex |
⊢ suc ( 𝐴 +o 𝐵 ) ∈ V |
10 |
7 8 9
|
fvmpt |
⊢ ( ( 𝐴 +o 𝐵 ) ∈ V → ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( 𝐴 +o 𝐵 ) ) = suc ( 𝐴 +o 𝐵 ) ) |
11 |
6 10
|
ax-mp |
⊢ ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( 𝐴 +o 𝐵 ) ) = suc ( 𝐴 +o 𝐵 ) |
12 |
|
oav |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) |
13 |
12
|
fveq2d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( 𝐴 +o 𝐵 ) ) = ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) ) |
14 |
11 13
|
eqtr3id |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → suc ( 𝐴 +o 𝐵 ) = ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) ) |
15 |
2 5 14
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o suc 𝐵 ) = suc ( 𝐴 +o 𝐵 ) ) |