| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rdgsuc |
⊢ ( 𝐵 ∈ On → ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) ) |
| 2 |
1
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) ) |
| 3 |
|
onsuc |
⊢ ( 𝐵 ∈ On → suc 𝐵 ∈ On ) |
| 4 |
|
oav |
⊢ ( ( 𝐴 ∈ On ∧ suc 𝐵 ∈ On ) → ( 𝐴 +o suc 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ suc 𝐵 ) ) |
| 5 |
3 4
|
sylan2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o suc 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ suc 𝐵 ) ) |
| 6 |
|
ovex |
⊢ ( 𝐴 +o 𝐵 ) ∈ V |
| 7 |
|
suceq |
⊢ ( 𝑥 = ( 𝐴 +o 𝐵 ) → suc 𝑥 = suc ( 𝐴 +o 𝐵 ) ) |
| 8 |
|
eqid |
⊢ ( 𝑥 ∈ V ↦ suc 𝑥 ) = ( 𝑥 ∈ V ↦ suc 𝑥 ) |
| 9 |
6
|
sucex |
⊢ suc ( 𝐴 +o 𝐵 ) ∈ V |
| 10 |
7 8 9
|
fvmpt |
⊢ ( ( 𝐴 +o 𝐵 ) ∈ V → ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( 𝐴 +o 𝐵 ) ) = suc ( 𝐴 +o 𝐵 ) ) |
| 11 |
6 10
|
ax-mp |
⊢ ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( 𝐴 +o 𝐵 ) ) = suc ( 𝐴 +o 𝐵 ) |
| 12 |
|
oav |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) |
| 13 |
12
|
fveq2d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( 𝐴 +o 𝐵 ) ) = ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) ) |
| 14 |
11 13
|
eqtr3id |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → suc ( 𝐴 +o 𝐵 ) = ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) ) |
| 15 |
2 5 14
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o suc 𝐵 ) = suc ( 𝐴 +o 𝐵 ) ) |