| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ss |
⊢ ∅ ⊆ 𝐵 |
| 2 |
|
0elon |
⊢ ∅ ∈ On |
| 3 |
|
oawordri |
⊢ ( ( ∅ ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ⊆ 𝐵 → ( ∅ +o 𝐴 ) ⊆ ( 𝐵 +o 𝐴 ) ) ) |
| 4 |
2 3
|
mp3an1 |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ⊆ 𝐵 → ( ∅ +o 𝐴 ) ⊆ ( 𝐵 +o 𝐴 ) ) ) |
| 5 |
|
oa0r |
⊢ ( 𝐴 ∈ On → ( ∅ +o 𝐴 ) = 𝐴 ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ∅ +o 𝐴 ) = 𝐴 ) |
| 7 |
6
|
sseq1d |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ( ∅ +o 𝐴 ) ⊆ ( 𝐵 +o 𝐴 ) ↔ 𝐴 ⊆ ( 𝐵 +o 𝐴 ) ) ) |
| 8 |
4 7
|
sylibd |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ⊆ 𝐵 → 𝐴 ⊆ ( 𝐵 +o 𝐴 ) ) ) |
| 9 |
1 8
|
mpi |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → 𝐴 ⊆ ( 𝐵 +o 𝐴 ) ) |
| 10 |
9
|
ancoms |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ⊆ ( 𝐵 +o 𝐴 ) ) |