| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sseq1 |
⊢ ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ( 𝐴 ⊆ 𝐵 ↔ if ( 𝐴 ∈ On , 𝐴 , ∅ ) ⊆ 𝐵 ) ) |
| 2 |
|
oveq1 |
⊢ ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ( 𝐴 +o 𝑥 ) = ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) +o 𝑥 ) ) |
| 3 |
2
|
eqeq1d |
⊢ ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ( ( 𝐴 +o 𝑥 ) = 𝐵 ↔ ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) +o 𝑥 ) = 𝐵 ) ) |
| 4 |
3
|
reubidv |
⊢ ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ( ∃! 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ↔ ∃! 𝑥 ∈ On ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) +o 𝑥 ) = 𝐵 ) ) |
| 5 |
1 4
|
imbi12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ( ( 𝐴 ⊆ 𝐵 → ∃! 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) ↔ ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) ⊆ 𝐵 → ∃! 𝑥 ∈ On ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) +o 𝑥 ) = 𝐵 ) ) ) |
| 6 |
|
sseq2 |
⊢ ( 𝐵 = if ( 𝐵 ∈ On , 𝐵 , ∅ ) → ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) ⊆ 𝐵 ↔ if ( 𝐴 ∈ On , 𝐴 , ∅ ) ⊆ if ( 𝐵 ∈ On , 𝐵 , ∅ ) ) ) |
| 7 |
|
eqeq2 |
⊢ ( 𝐵 = if ( 𝐵 ∈ On , 𝐵 , ∅ ) → ( ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) +o 𝑥 ) = 𝐵 ↔ ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) +o 𝑥 ) = if ( 𝐵 ∈ On , 𝐵 , ∅ ) ) ) |
| 8 |
7
|
reubidv |
⊢ ( 𝐵 = if ( 𝐵 ∈ On , 𝐵 , ∅ ) → ( ∃! 𝑥 ∈ On ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) +o 𝑥 ) = 𝐵 ↔ ∃! 𝑥 ∈ On ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) +o 𝑥 ) = if ( 𝐵 ∈ On , 𝐵 , ∅ ) ) ) |
| 9 |
6 8
|
imbi12d |
⊢ ( 𝐵 = if ( 𝐵 ∈ On , 𝐵 , ∅ ) → ( ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) ⊆ 𝐵 → ∃! 𝑥 ∈ On ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) +o 𝑥 ) = 𝐵 ) ↔ ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) ⊆ if ( 𝐵 ∈ On , 𝐵 , ∅ ) → ∃! 𝑥 ∈ On ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) +o 𝑥 ) = if ( 𝐵 ∈ On , 𝐵 , ∅ ) ) ) ) |
| 10 |
|
0elon |
⊢ ∅ ∈ On |
| 11 |
10
|
elimel |
⊢ if ( 𝐴 ∈ On , 𝐴 , ∅ ) ∈ On |
| 12 |
10
|
elimel |
⊢ if ( 𝐵 ∈ On , 𝐵 , ∅ ) ∈ On |
| 13 |
|
eqid |
⊢ { 𝑦 ∈ On ∣ if ( 𝐵 ∈ On , 𝐵 , ∅ ) ⊆ ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) +o 𝑦 ) } = { 𝑦 ∈ On ∣ if ( 𝐵 ∈ On , 𝐵 , ∅ ) ⊆ ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) +o 𝑦 ) } |
| 14 |
11 12 13
|
oawordeulem |
⊢ ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) ⊆ if ( 𝐵 ∈ On , 𝐵 , ∅ ) → ∃! 𝑥 ∈ On ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) +o 𝑥 ) = if ( 𝐵 ∈ On , 𝐵 , ∅ ) ) |
| 15 |
5 9 14
|
dedth2h |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 → ∃! 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) ) |
| 16 |
15
|
imp |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ∃! 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) |