Step |
Hyp |
Ref |
Expression |
1 |
|
oawordeu |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ∃! 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) |
2 |
1
|
ex |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 → ∃! 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) ) |
3 |
|
reurex |
⊢ ( ∃! 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 → ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) |
4 |
2 3
|
syl6 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 → ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) ) |
5 |
|
oawordexr |
⊢ ( ( 𝐴 ∈ On ∧ ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) → 𝐴 ⊆ 𝐵 ) |
6 |
5
|
ex |
⊢ ( 𝐴 ∈ On → ( ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 → 𝐴 ⊆ 𝐵 ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 → 𝐴 ⊆ 𝐵 ) ) |
8 |
4 7
|
impbid |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) ) |