Metamath Proof Explorer


Theorem oawordexr

Description: Existence theorem for weak ordering of ordinal sum. (Contributed by NM, 12-Dec-2004)

Ref Expression
Assertion oawordexr ( ( 𝐴 ∈ On ∧ ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) → 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 oaword1 ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → 𝐴 ⊆ ( 𝐴 +o 𝑥 ) )
2 sseq2 ( ( 𝐴 +o 𝑥 ) = 𝐵 → ( 𝐴 ⊆ ( 𝐴 +o 𝑥 ) ↔ 𝐴𝐵 ) )
3 1 2 syl5ibcom ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( ( 𝐴 +o 𝑥 ) = 𝐵𝐴𝐵 ) )
4 3 rexlimdva ( 𝐴 ∈ On → ( ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵𝐴𝐵 ) )
5 4 imp ( ( 𝐴 ∈ On ∧ ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) → 𝐴𝐵 )