Description: Existence theorem for weak ordering of ordinal sum. (Contributed by NM, 12-Dec-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | oawordexr | ⊢ ( ( 𝐴 ∈ On ∧ ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) → 𝐴 ⊆ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oaword1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → 𝐴 ⊆ ( 𝐴 +o 𝑥 ) ) | |
2 | sseq2 | ⊢ ( ( 𝐴 +o 𝑥 ) = 𝐵 → ( 𝐴 ⊆ ( 𝐴 +o 𝑥 ) ↔ 𝐴 ⊆ 𝐵 ) ) | |
3 | 1 2 | syl5ibcom | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( ( 𝐴 +o 𝑥 ) = 𝐵 → 𝐴 ⊆ 𝐵 ) ) |
4 | 3 | rexlimdva | ⊢ ( 𝐴 ∈ On → ( ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 → 𝐴 ⊆ 𝐵 ) ) |
5 | 4 | imp | ⊢ ( ( 𝐴 ∈ On ∧ ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) → 𝐴 ⊆ 𝐵 ) |