| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o ∅ ) ) |
| 2 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o ∅ ) ) |
| 3 |
1 2
|
sseq12d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 +o 𝑥 ) ⊆ ( 𝐵 +o 𝑥 ) ↔ ( 𝐴 +o ∅ ) ⊆ ( 𝐵 +o ∅ ) ) ) |
| 4 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝑦 ) ) |
| 5 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o 𝑦 ) ) |
| 6 |
4 5
|
sseq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 +o 𝑥 ) ⊆ ( 𝐵 +o 𝑥 ) ↔ ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) ) ) |
| 7 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o suc 𝑦 ) ) |
| 8 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o suc 𝑦 ) ) |
| 9 |
7 8
|
sseq12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 +o 𝑥 ) ⊆ ( 𝐵 +o 𝑥 ) ↔ ( 𝐴 +o suc 𝑦 ) ⊆ ( 𝐵 +o suc 𝑦 ) ) ) |
| 10 |
|
oveq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝐶 ) ) |
| 11 |
|
oveq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o 𝐶 ) ) |
| 12 |
10 11
|
sseq12d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 +o 𝑥 ) ⊆ ( 𝐵 +o 𝑥 ) ↔ ( 𝐴 +o 𝐶 ) ⊆ ( 𝐵 +o 𝐶 ) ) ) |
| 13 |
|
oa0 |
⊢ ( 𝐴 ∈ On → ( 𝐴 +o ∅ ) = 𝐴 ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o ∅ ) = 𝐴 ) |
| 15 |
|
oa0 |
⊢ ( 𝐵 ∈ On → ( 𝐵 +o ∅ ) = 𝐵 ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 +o ∅ ) = 𝐵 ) |
| 17 |
14 16
|
sseq12d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o ∅ ) ⊆ ( 𝐵 +o ∅ ) ↔ 𝐴 ⊆ 𝐵 ) ) |
| 18 |
17
|
biimpar |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 +o ∅ ) ⊆ ( 𝐵 +o ∅ ) ) |
| 19 |
|
oacl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 +o 𝑦 ) ∈ On ) |
| 20 |
|
eloni |
⊢ ( ( 𝐴 +o 𝑦 ) ∈ On → Ord ( 𝐴 +o 𝑦 ) ) |
| 21 |
19 20
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → Ord ( 𝐴 +o 𝑦 ) ) |
| 22 |
|
oacl |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 +o 𝑦 ) ∈ On ) |
| 23 |
|
eloni |
⊢ ( ( 𝐵 +o 𝑦 ) ∈ On → Ord ( 𝐵 +o 𝑦 ) ) |
| 24 |
22 23
|
syl |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → Ord ( 𝐵 +o 𝑦 ) ) |
| 25 |
|
ordsucsssuc |
⊢ ( ( Ord ( 𝐴 +o 𝑦 ) ∧ Ord ( 𝐵 +o 𝑦 ) ) → ( ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) ↔ suc ( 𝐴 +o 𝑦 ) ⊆ suc ( 𝐵 +o 𝑦 ) ) ) |
| 26 |
21 24 25
|
syl2an |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) ) → ( ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) ↔ suc ( 𝐴 +o 𝑦 ) ⊆ suc ( 𝐵 +o 𝑦 ) ) ) |
| 27 |
26
|
anandirs |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑦 ∈ On ) → ( ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) ↔ suc ( 𝐴 +o 𝑦 ) ⊆ suc ( 𝐵 +o 𝑦 ) ) ) |
| 28 |
|
oasuc |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 +o suc 𝑦 ) = suc ( 𝐴 +o 𝑦 ) ) |
| 29 |
28
|
adantlr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑦 ∈ On ) → ( 𝐴 +o suc 𝑦 ) = suc ( 𝐴 +o 𝑦 ) ) |
| 30 |
|
oasuc |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 +o suc 𝑦 ) = suc ( 𝐵 +o 𝑦 ) ) |
| 31 |
30
|
adantll |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑦 ∈ On ) → ( 𝐵 +o suc 𝑦 ) = suc ( 𝐵 +o 𝑦 ) ) |
| 32 |
29 31
|
sseq12d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑦 ∈ On ) → ( ( 𝐴 +o suc 𝑦 ) ⊆ ( 𝐵 +o suc 𝑦 ) ↔ suc ( 𝐴 +o 𝑦 ) ⊆ suc ( 𝐵 +o 𝑦 ) ) ) |
| 33 |
27 32
|
bitr4d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑦 ∈ On ) → ( ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) ↔ ( 𝐴 +o suc 𝑦 ) ⊆ ( 𝐵 +o suc 𝑦 ) ) ) |
| 34 |
33
|
biimpd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑦 ∈ On ) → ( ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) → ( 𝐴 +o suc 𝑦 ) ⊆ ( 𝐵 +o suc 𝑦 ) ) ) |
| 35 |
34
|
expcom |
⊢ ( 𝑦 ∈ On → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) → ( 𝐴 +o suc 𝑦 ) ⊆ ( 𝐵 +o suc 𝑦 ) ) ) ) |
| 36 |
35
|
adantrd |
⊢ ( 𝑦 ∈ On → ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) → ( 𝐴 +o suc 𝑦 ) ⊆ ( 𝐵 +o suc 𝑦 ) ) ) ) |
| 37 |
|
vex |
⊢ 𝑥 ∈ V |
| 38 |
|
ss2iun |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) → ∪ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐵 +o 𝑦 ) ) |
| 39 |
|
oalim |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( 𝐴 +o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ) |
| 40 |
39
|
adantlr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( 𝐴 +o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ) |
| 41 |
|
oalim |
⊢ ( ( 𝐵 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( 𝐵 +o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐵 +o 𝑦 ) ) |
| 42 |
41
|
adantll |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( 𝐵 +o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐵 +o 𝑦 ) ) |
| 43 |
40 42
|
sseq12d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( ( 𝐴 +o 𝑥 ) ⊆ ( 𝐵 +o 𝑥 ) ↔ ∪ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐵 +o 𝑦 ) ) ) |
| 44 |
38 43
|
imbitrrid |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) → ( 𝐴 +o 𝑥 ) ⊆ ( 𝐵 +o 𝑥 ) ) ) |
| 45 |
37 44
|
mpanr1 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ Lim 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) → ( 𝐴 +o 𝑥 ) ⊆ ( 𝐵 +o 𝑥 ) ) ) |
| 46 |
45
|
expcom |
⊢ ( Lim 𝑥 → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) → ( 𝐴 +o 𝑥 ) ⊆ ( 𝐵 +o 𝑥 ) ) ) ) |
| 47 |
46
|
adantrd |
⊢ ( Lim 𝑥 → ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) → ( 𝐴 +o 𝑥 ) ⊆ ( 𝐵 +o 𝑥 ) ) ) ) |
| 48 |
3 6 9 12 18 36 47
|
tfinds3 |
⊢ ( 𝐶 ∈ On → ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 +o 𝐶 ) ⊆ ( 𝐵 +o 𝐶 ) ) ) |
| 49 |
48
|
exp4c |
⊢ ( 𝐶 ∈ On → ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o 𝐶 ) ⊆ ( 𝐵 +o 𝐶 ) ) ) ) ) |
| 50 |
49
|
3imp231 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o 𝐶 ) ⊆ ( 𝐵 +o 𝐶 ) ) ) |