Step |
Hyp |
Ref |
Expression |
1 |
|
ocsh |
⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) |
2 |
|
ax-hcompl |
⊢ ( 𝑓 ∈ Cauchy → ∃ 𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥 ) |
3 |
|
vex |
⊢ 𝑓 ∈ V |
4 |
|
vex |
⊢ 𝑥 ∈ V |
5 |
3 4
|
breldm |
⊢ ( 𝑓 ⇝𝑣 𝑥 → 𝑓 ∈ dom ⇝𝑣 ) |
6 |
5
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥 → 𝑓 ∈ dom ⇝𝑣 ) |
7 |
2 6
|
syl |
⊢ ( 𝑓 ∈ Cauchy → 𝑓 ∈ dom ⇝𝑣 ) |
8 |
7
|
ad2antlr |
⊢ ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) → 𝑓 ∈ dom ⇝𝑣 ) |
9 |
|
hlimf |
⊢ ⇝𝑣 : dom ⇝𝑣 ⟶ ℋ |
10 |
9
|
ffvelrni |
⊢ ( 𝑓 ∈ dom ⇝𝑣 → ( ⇝𝑣 ‘ 𝑓 ) ∈ ℋ ) |
11 |
8 10
|
syl |
⊢ ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) → ( ⇝𝑣 ‘ 𝑓 ) ∈ ℋ ) |
12 |
|
simplll |
⊢ ( ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ⊆ ℋ ) |
13 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑓 ∈ Cauchy ) |
14 |
|
simplr |
⊢ ( ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) |
15 |
|
simpr |
⊢ ( ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
16 |
12 13 14 15
|
occllem |
⊢ ( ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ⇝𝑣 ‘ 𝑓 ) ·ih 𝑥 ) = 0 ) |
17 |
16
|
ralrimiva |
⊢ ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) → ∀ 𝑥 ∈ 𝐴 ( ( ⇝𝑣 ‘ 𝑓 ) ·ih 𝑥 ) = 0 ) |
18 |
|
ocel |
⊢ ( 𝐴 ⊆ ℋ → ( ( ⇝𝑣 ‘ 𝑓 ) ∈ ( ⊥ ‘ 𝐴 ) ↔ ( ( ⇝𝑣 ‘ 𝑓 ) ∈ ℋ ∧ ∀ 𝑥 ∈ 𝐴 ( ( ⇝𝑣 ‘ 𝑓 ) ·ih 𝑥 ) = 0 ) ) ) |
19 |
18
|
ad2antrr |
⊢ ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) → ( ( ⇝𝑣 ‘ 𝑓 ) ∈ ( ⊥ ‘ 𝐴 ) ↔ ( ( ⇝𝑣 ‘ 𝑓 ) ∈ ℋ ∧ ∀ 𝑥 ∈ 𝐴 ( ( ⇝𝑣 ‘ 𝑓 ) ·ih 𝑥 ) = 0 ) ) ) |
20 |
11 17 19
|
mpbir2and |
⊢ ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) → ( ⇝𝑣 ‘ 𝑓 ) ∈ ( ⊥ ‘ 𝐴 ) ) |
21 |
|
ffun |
⊢ ( ⇝𝑣 : dom ⇝𝑣 ⟶ ℋ → Fun ⇝𝑣 ) |
22 |
|
funfvbrb |
⊢ ( Fun ⇝𝑣 → ( 𝑓 ∈ dom ⇝𝑣 ↔ 𝑓 ⇝𝑣 ( ⇝𝑣 ‘ 𝑓 ) ) ) |
23 |
9 21 22
|
mp2b |
⊢ ( 𝑓 ∈ dom ⇝𝑣 ↔ 𝑓 ⇝𝑣 ( ⇝𝑣 ‘ 𝑓 ) ) |
24 |
8 23
|
sylib |
⊢ ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) → 𝑓 ⇝𝑣 ( ⇝𝑣 ‘ 𝑓 ) ) |
25 |
|
breq2 |
⊢ ( 𝑥 = ( ⇝𝑣 ‘ 𝑓 ) → ( 𝑓 ⇝𝑣 𝑥 ↔ 𝑓 ⇝𝑣 ( ⇝𝑣 ‘ 𝑓 ) ) ) |
26 |
25
|
rspcev |
⊢ ( ( ( ⇝𝑣 ‘ 𝑓 ) ∈ ( ⊥ ‘ 𝐴 ) ∧ 𝑓 ⇝𝑣 ( ⇝𝑣 ‘ 𝑓 ) ) → ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) 𝑓 ⇝𝑣 𝑥 ) |
27 |
20 24 26
|
syl2anc |
⊢ ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) → ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) 𝑓 ⇝𝑣 𝑥 ) |
28 |
27
|
ex |
⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) → ( 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) → ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) 𝑓 ⇝𝑣 𝑥 ) ) |
29 |
28
|
ralrimiva |
⊢ ( 𝐴 ⊆ ℋ → ∀ 𝑓 ∈ Cauchy ( 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) → ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) 𝑓 ⇝𝑣 𝑥 ) ) |
30 |
|
isch3 |
⊢ ( ( ⊥ ‘ 𝐴 ) ∈ Cℋ ↔ ( ( ⊥ ‘ 𝐴 ) ∈ Sℋ ∧ ∀ 𝑓 ∈ Cauchy ( 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) → ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) 𝑓 ⇝𝑣 𝑥 ) ) ) |
31 |
1 29 30
|
sylanbrc |
⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) |