Metamath Proof Explorer


Theorem occl

Description: Closure of complement of Hilbert subset. Part of Remark 3.12 of Beran p. 107. (Contributed by NM, 8-Aug-2000) (Proof shortened by Mario Carneiro, 14-May-2014) (New usage is discouraged.)

Ref Expression
Assertion occl ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ∈ C )

Proof

Step Hyp Ref Expression
1 ocsh ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ∈ S )
2 ax-hcompl ( 𝑓 ∈ Cauchy → ∃ 𝑥 ∈ ℋ 𝑓𝑣 𝑥 )
3 vex 𝑓 ∈ V
4 vex 𝑥 ∈ V
5 3 4 breldm ( 𝑓𝑣 𝑥𝑓 ∈ dom ⇝𝑣 )
6 5 rexlimivw ( ∃ 𝑥 ∈ ℋ 𝑓𝑣 𝑥𝑓 ∈ dom ⇝𝑣 )
7 2 6 syl ( 𝑓 ∈ Cauchy → 𝑓 ∈ dom ⇝𝑣 )
8 7 ad2antlr ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) → 𝑓 ∈ dom ⇝𝑣 )
9 hlimf 𝑣 : dom ⇝𝑣 ⟶ ℋ
10 9 ffvelrni ( 𝑓 ∈ dom ⇝𝑣 → ( ⇝𝑣𝑓 ) ∈ ℋ )
11 8 10 syl ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) → ( ⇝𝑣𝑓 ) ∈ ℋ )
12 simplll ( ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) ∧ 𝑥𝐴 ) → 𝐴 ⊆ ℋ )
13 simpllr ( ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) ∧ 𝑥𝐴 ) → 𝑓 ∈ Cauchy )
14 simplr ( ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) ∧ 𝑥𝐴 ) → 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) )
15 simpr ( ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) ∧ 𝑥𝐴 ) → 𝑥𝐴 )
16 12 13 14 15 occllem ( ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) ∧ 𝑥𝐴 ) → ( ( ⇝𝑣𝑓 ) ·ih 𝑥 ) = 0 )
17 16 ralrimiva ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) → ∀ 𝑥𝐴 ( ( ⇝𝑣𝑓 ) ·ih 𝑥 ) = 0 )
18 ocel ( 𝐴 ⊆ ℋ → ( ( ⇝𝑣𝑓 ) ∈ ( ⊥ ‘ 𝐴 ) ↔ ( ( ⇝𝑣𝑓 ) ∈ ℋ ∧ ∀ 𝑥𝐴 ( ( ⇝𝑣𝑓 ) ·ih 𝑥 ) = 0 ) ) )
19 18 ad2antrr ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) → ( ( ⇝𝑣𝑓 ) ∈ ( ⊥ ‘ 𝐴 ) ↔ ( ( ⇝𝑣𝑓 ) ∈ ℋ ∧ ∀ 𝑥𝐴 ( ( ⇝𝑣𝑓 ) ·ih 𝑥 ) = 0 ) ) )
20 11 17 19 mpbir2and ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) → ( ⇝𝑣𝑓 ) ∈ ( ⊥ ‘ 𝐴 ) )
21 ffun ( ⇝𝑣 : dom ⇝𝑣 ⟶ ℋ → Fun ⇝𝑣 )
22 funfvbrb ( Fun ⇝𝑣 → ( 𝑓 ∈ dom ⇝𝑣𝑓𝑣 ( ⇝𝑣𝑓 ) ) )
23 9 21 22 mp2b ( 𝑓 ∈ dom ⇝𝑣𝑓𝑣 ( ⇝𝑣𝑓 ) )
24 8 23 sylib ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) → 𝑓𝑣 ( ⇝𝑣𝑓 ) )
25 breq2 ( 𝑥 = ( ⇝𝑣𝑓 ) → ( 𝑓𝑣 𝑥𝑓𝑣 ( ⇝𝑣𝑓 ) ) )
26 25 rspcev ( ( ( ⇝𝑣𝑓 ) ∈ ( ⊥ ‘ 𝐴 ) ∧ 𝑓𝑣 ( ⇝𝑣𝑓 ) ) → ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) 𝑓𝑣 𝑥 )
27 20 24 26 syl2anc ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) → ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) 𝑓𝑣 𝑥 )
28 27 ex ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) → ( 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) → ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) 𝑓𝑣 𝑥 ) )
29 28 ralrimiva ( 𝐴 ⊆ ℋ → ∀ 𝑓 ∈ Cauchy ( 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) → ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) 𝑓𝑣 𝑥 ) )
30 isch3 ( ( ⊥ ‘ 𝐴 ) ∈ C ↔ ( ( ⊥ ‘ 𝐴 ) ∈ S ∧ ∀ 𝑓 ∈ Cauchy ( 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) → ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) 𝑓𝑣 𝑥 ) ) )
31 1 29 30 sylanbrc ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ∈ C )