| Step | Hyp | Ref | Expression | 
						
							| 1 |  | occl.1 | ⊢ ( 𝜑  →  𝐴  ⊆   ℋ ) | 
						
							| 2 |  | occl.2 | ⊢ ( 𝜑  →  𝐹  ∈  Cauchy ) | 
						
							| 3 |  | occl.3 | ⊢ ( 𝜑  →  𝐹 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) | 
						
							| 4 |  | occl.4 | ⊢ ( 𝜑  →  𝐵  ∈  𝐴 ) | 
						
							| 5 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 6 | 5 | cnfldhaus | ⊢ ( TopOpen ‘ ℂfld )  ∈  Haus | 
						
							| 7 | 6 | a1i | ⊢ ( 𝜑  →  ( TopOpen ‘ ℂfld )  ∈  Haus ) | 
						
							| 8 |  | ax-hcompl | ⊢ ( 𝐹  ∈  Cauchy  →  ∃ 𝑥  ∈   ℋ 𝐹  ⇝𝑣  𝑥 ) | 
						
							| 9 |  | hlimf | ⊢  ⇝𝑣  : dom   ⇝𝑣  ⟶  ℋ | 
						
							| 10 |  | ffn | ⊢ (  ⇝𝑣  : dom   ⇝𝑣  ⟶  ℋ  →   ⇝𝑣   Fn  dom   ⇝𝑣  ) | 
						
							| 11 | 9 10 | ax-mp | ⊢  ⇝𝑣   Fn  dom   ⇝𝑣 | 
						
							| 12 |  | fnbr | ⊢ ( (  ⇝𝑣   Fn  dom   ⇝𝑣   ∧  𝐹  ⇝𝑣  𝑥 )  →  𝐹  ∈  dom   ⇝𝑣  ) | 
						
							| 13 | 11 12 | mpan | ⊢ ( 𝐹  ⇝𝑣  𝑥  →  𝐹  ∈  dom   ⇝𝑣  ) | 
						
							| 14 | 13 | rexlimivw | ⊢ ( ∃ 𝑥  ∈   ℋ 𝐹  ⇝𝑣  𝑥  →  𝐹  ∈  dom   ⇝𝑣  ) | 
						
							| 15 | 2 8 14 | 3syl | ⊢ ( 𝜑  →  𝐹  ∈  dom   ⇝𝑣  ) | 
						
							| 16 |  | ffun | ⊢ (  ⇝𝑣  : dom   ⇝𝑣  ⟶  ℋ  →  Fun   ⇝𝑣  ) | 
						
							| 17 |  | funfvbrb | ⊢ ( Fun   ⇝𝑣   →  ( 𝐹  ∈  dom   ⇝𝑣   ↔  𝐹  ⇝𝑣  (  ⇝𝑣  ‘ 𝐹 ) ) ) | 
						
							| 18 | 9 16 17 | mp2b | ⊢ ( 𝐹  ∈  dom   ⇝𝑣   ↔  𝐹  ⇝𝑣  (  ⇝𝑣  ‘ 𝐹 ) ) | 
						
							| 19 | 15 18 | sylib | ⊢ ( 𝜑  →  𝐹  ⇝𝑣  (  ⇝𝑣  ‘ 𝐹 ) ) | 
						
							| 20 |  | eqid | ⊢ 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉  =  〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 | 
						
							| 21 |  | eqid | ⊢ ( normℎ  ∘   −ℎ  )  =  ( normℎ  ∘   −ℎ  ) | 
						
							| 22 | 20 21 | hhims | ⊢ ( normℎ  ∘   −ℎ  )  =  ( IndMet ‘ 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 ) | 
						
							| 23 |  | eqid | ⊢ ( MetOpen ‘ ( normℎ  ∘   −ℎ  ) )  =  ( MetOpen ‘ ( normℎ  ∘   −ℎ  ) ) | 
						
							| 24 | 20 22 23 | hhlm | ⊢  ⇝𝑣   =  ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ  ∘   −ℎ  ) ) )  ↾  (  ℋ  ↑m  ℕ ) ) | 
						
							| 25 |  | resss | ⊢ ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ  ∘   −ℎ  ) ) )  ↾  (  ℋ  ↑m  ℕ ) )  ⊆  ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ  ∘   −ℎ  ) ) ) | 
						
							| 26 | 24 25 | eqsstri | ⊢  ⇝𝑣   ⊆  ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ  ∘   −ℎ  ) ) ) | 
						
							| 27 | 26 | ssbri | ⊢ ( 𝐹  ⇝𝑣  (  ⇝𝑣  ‘ 𝐹 )  →  𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ  ∘   −ℎ  ) ) ) (  ⇝𝑣  ‘ 𝐹 ) ) | 
						
							| 28 | 19 27 | syl | ⊢ ( 𝜑  →  𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ  ∘   −ℎ  ) ) ) (  ⇝𝑣  ‘ 𝐹 ) ) | 
						
							| 29 | 21 | hilxmet | ⊢ ( normℎ  ∘   −ℎ  )  ∈  ( ∞Met ‘  ℋ ) | 
						
							| 30 | 23 | mopntopon | ⊢ ( ( normℎ  ∘   −ℎ  )  ∈  ( ∞Met ‘  ℋ )  →  ( MetOpen ‘ ( normℎ  ∘   −ℎ  ) )  ∈  ( TopOn ‘  ℋ ) ) | 
						
							| 31 | 29 30 | mp1i | ⊢ ( 𝜑  →  ( MetOpen ‘ ( normℎ  ∘   −ℎ  ) )  ∈  ( TopOn ‘  ℋ ) ) | 
						
							| 32 | 31 | cnmptid | ⊢ ( 𝜑  →  ( 𝑥  ∈   ℋ  ↦  𝑥 )  ∈  ( ( MetOpen ‘ ( normℎ  ∘   −ℎ  ) )  Cn  ( MetOpen ‘ ( normℎ  ∘   −ℎ  ) ) ) ) | 
						
							| 33 | 1 4 | sseldd | ⊢ ( 𝜑  →  𝐵  ∈   ℋ ) | 
						
							| 34 | 31 31 33 | cnmptc | ⊢ ( 𝜑  →  ( 𝑥  ∈   ℋ  ↦  𝐵 )  ∈  ( ( MetOpen ‘ ( normℎ  ∘   −ℎ  ) )  Cn  ( MetOpen ‘ ( normℎ  ∘   −ℎ  ) ) ) ) | 
						
							| 35 | 20 | hhnv | ⊢ 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉  ∈  NrmCVec | 
						
							| 36 | 20 | hhip | ⊢  ·ih   =  ( ·𝑖OLD ‘ 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 ) | 
						
							| 37 | 36 22 23 5 | dipcn | ⊢ ( 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉  ∈  NrmCVec  →   ·ih   ∈  ( ( ( MetOpen ‘ ( normℎ  ∘   −ℎ  ) )  ×t  ( MetOpen ‘ ( normℎ  ∘   −ℎ  ) ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 38 | 35 37 | mp1i | ⊢ ( 𝜑  →   ·ih   ∈  ( ( ( MetOpen ‘ ( normℎ  ∘   −ℎ  ) )  ×t  ( MetOpen ‘ ( normℎ  ∘   −ℎ  ) ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 39 | 31 32 34 38 | cnmpt12f | ⊢ ( 𝜑  →  ( 𝑥  ∈   ℋ  ↦  ( 𝑥  ·ih  𝐵 ) )  ∈  ( ( MetOpen ‘ ( normℎ  ∘   −ℎ  ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 40 | 28 39 | lmcn | ⊢ ( 𝜑  →  ( ( 𝑥  ∈   ℋ  ↦  ( 𝑥  ·ih  𝐵 ) )  ∘  𝐹 ) ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) ( ( 𝑥  ∈   ℋ  ↦  ( 𝑥  ·ih  𝐵 ) ) ‘ (  ⇝𝑣  ‘ 𝐹 ) ) ) | 
						
							| 41 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( ⊥ ‘ 𝐴 ) ) | 
						
							| 42 |  | ocel | ⊢ ( 𝐴  ⊆   ℋ  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ( ⊥ ‘ 𝐴 )  ↔  ( ( 𝐹 ‘ 𝑘 )  ∈   ℋ  ∧  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑘 )  ·ih  𝑥 )  =  0 ) ) ) | 
						
							| 43 | 1 42 | syl | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ( ⊥ ‘ 𝐴 )  ↔  ( ( 𝐹 ‘ 𝑘 )  ∈   ℋ  ∧  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑘 )  ·ih  𝑥 )  =  0 ) ) ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ( ⊥ ‘ 𝐴 )  ↔  ( ( 𝐹 ‘ 𝑘 )  ∈   ℋ  ∧  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑘 )  ·ih  𝑥 )  =  0 ) ) ) | 
						
							| 45 | 41 44 | mpbid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑘 )  ∈   ℋ  ∧  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑘 )  ·ih  𝑥 )  =  0 ) ) | 
						
							| 46 | 45 | simpld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  ∈   ℋ ) | 
						
							| 47 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑘 )  →  ( 𝑥  ·ih  𝐵 )  =  ( ( 𝐹 ‘ 𝑘 )  ·ih  𝐵 ) ) | 
						
							| 48 |  | eqid | ⊢ ( 𝑥  ∈   ℋ  ↦  ( 𝑥  ·ih  𝐵 ) )  =  ( 𝑥  ∈   ℋ  ↦  ( 𝑥  ·ih  𝐵 ) ) | 
						
							| 49 |  | ovex | ⊢ ( ( 𝐹 ‘ 𝑘 )  ·ih  𝐵 )  ∈  V | 
						
							| 50 | 47 48 49 | fvmpt | ⊢ ( ( 𝐹 ‘ 𝑘 )  ∈   ℋ  →  ( ( 𝑥  ∈   ℋ  ↦  ( 𝑥  ·ih  𝐵 ) ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  ( ( 𝐹 ‘ 𝑘 )  ·ih  𝐵 ) ) | 
						
							| 51 | 46 50 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑥  ∈   ℋ  ↦  ( 𝑥  ·ih  𝐵 ) ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  ( ( 𝐹 ‘ 𝑘 )  ·ih  𝐵 ) ) | 
						
							| 52 |  | oveq2 | ⊢ ( 𝑥  =  𝐵  →  ( ( 𝐹 ‘ 𝑘 )  ·ih  𝑥 )  =  ( ( 𝐹 ‘ 𝑘 )  ·ih  𝐵 ) ) | 
						
							| 53 | 52 | eqeq1d | ⊢ ( 𝑥  =  𝐵  →  ( ( ( 𝐹 ‘ 𝑘 )  ·ih  𝑥 )  =  0  ↔  ( ( 𝐹 ‘ 𝑘 )  ·ih  𝐵 )  =  0 ) ) | 
						
							| 54 | 45 | simprd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑘 )  ·ih  𝑥 )  =  0 ) | 
						
							| 55 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝐵  ∈  𝐴 ) | 
						
							| 56 | 53 54 55 | rspcdva | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑘 )  ·ih  𝐵 )  =  0 ) | 
						
							| 57 | 51 56 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑥  ∈   ℋ  ↦  ( 𝑥  ·ih  𝐵 ) ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  0 ) | 
						
							| 58 |  | ocss | ⊢ ( 𝐴  ⊆   ℋ  →  ( ⊥ ‘ 𝐴 )  ⊆   ℋ ) | 
						
							| 59 | 1 58 | syl | ⊢ ( 𝜑  →  ( ⊥ ‘ 𝐴 )  ⊆   ℋ ) | 
						
							| 60 | 3 59 | fssd | ⊢ ( 𝜑  →  𝐹 : ℕ ⟶  ℋ ) | 
						
							| 61 |  | fvco3 | ⊢ ( ( 𝐹 : ℕ ⟶  ℋ  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝑥  ∈   ℋ  ↦  ( 𝑥  ·ih  𝐵 ) )  ∘  𝐹 ) ‘ 𝑘 )  =  ( ( 𝑥  ∈   ℋ  ↦  ( 𝑥  ·ih  𝐵 ) ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 62 | 60 61 | sylan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝑥  ∈   ℋ  ↦  ( 𝑥  ·ih  𝐵 ) )  ∘  𝐹 ) ‘ 𝑘 )  =  ( ( 𝑥  ∈   ℋ  ↦  ( 𝑥  ·ih  𝐵 ) ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 63 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 64 | 63 | fvconst2 | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ℕ  ×  { 0 } ) ‘ 𝑘 )  =  0 ) | 
						
							| 65 | 64 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ℕ  ×  { 0 } ) ‘ 𝑘 )  =  0 ) | 
						
							| 66 | 57 62 65 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝑥  ∈   ℋ  ↦  ( 𝑥  ·ih  𝐵 ) )  ∘  𝐹 ) ‘ 𝑘 )  =  ( ( ℕ  ×  { 0 } ) ‘ 𝑘 ) ) | 
						
							| 67 | 66 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ℕ ( ( ( 𝑥  ∈   ℋ  ↦  ( 𝑥  ·ih  𝐵 ) )  ∘  𝐹 ) ‘ 𝑘 )  =  ( ( ℕ  ×  { 0 } ) ‘ 𝑘 ) ) | 
						
							| 68 |  | ovex | ⊢ ( 𝑥  ·ih  𝐵 )  ∈  V | 
						
							| 69 | 68 48 | fnmpti | ⊢ ( 𝑥  ∈   ℋ  ↦  ( 𝑥  ·ih  𝐵 ) )  Fn   ℋ | 
						
							| 70 |  | fnfco | ⊢ ( ( ( 𝑥  ∈   ℋ  ↦  ( 𝑥  ·ih  𝐵 ) )  Fn   ℋ  ∧  𝐹 : ℕ ⟶  ℋ )  →  ( ( 𝑥  ∈   ℋ  ↦  ( 𝑥  ·ih  𝐵 ) )  ∘  𝐹 )  Fn  ℕ ) | 
						
							| 71 | 69 60 70 | sylancr | ⊢ ( 𝜑  →  ( ( 𝑥  ∈   ℋ  ↦  ( 𝑥  ·ih  𝐵 ) )  ∘  𝐹 )  Fn  ℕ ) | 
						
							| 72 | 63 | fconst | ⊢ ( ℕ  ×  { 0 } ) : ℕ ⟶ { 0 } | 
						
							| 73 |  | ffn | ⊢ ( ( ℕ  ×  { 0 } ) : ℕ ⟶ { 0 }  →  ( ℕ  ×  { 0 } )  Fn  ℕ ) | 
						
							| 74 | 72 73 | ax-mp | ⊢ ( ℕ  ×  { 0 } )  Fn  ℕ | 
						
							| 75 |  | eqfnfv | ⊢ ( ( ( ( 𝑥  ∈   ℋ  ↦  ( 𝑥  ·ih  𝐵 ) )  ∘  𝐹 )  Fn  ℕ  ∧  ( ℕ  ×  { 0 } )  Fn  ℕ )  →  ( ( ( 𝑥  ∈   ℋ  ↦  ( 𝑥  ·ih  𝐵 ) )  ∘  𝐹 )  =  ( ℕ  ×  { 0 } )  ↔  ∀ 𝑘  ∈  ℕ ( ( ( 𝑥  ∈   ℋ  ↦  ( 𝑥  ·ih  𝐵 ) )  ∘  𝐹 ) ‘ 𝑘 )  =  ( ( ℕ  ×  { 0 } ) ‘ 𝑘 ) ) ) | 
						
							| 76 | 71 74 75 | sylancl | ⊢ ( 𝜑  →  ( ( ( 𝑥  ∈   ℋ  ↦  ( 𝑥  ·ih  𝐵 ) )  ∘  𝐹 )  =  ( ℕ  ×  { 0 } )  ↔  ∀ 𝑘  ∈  ℕ ( ( ( 𝑥  ∈   ℋ  ↦  ( 𝑥  ·ih  𝐵 ) )  ∘  𝐹 ) ‘ 𝑘 )  =  ( ( ℕ  ×  { 0 } ) ‘ 𝑘 ) ) ) | 
						
							| 77 | 67 76 | mpbird | ⊢ ( 𝜑  →  ( ( 𝑥  ∈   ℋ  ↦  ( 𝑥  ·ih  𝐵 ) )  ∘  𝐹 )  =  ( ℕ  ×  { 0 } ) ) | 
						
							| 78 |  | fvex | ⊢ (  ⇝𝑣  ‘ 𝐹 )  ∈  V | 
						
							| 79 | 78 | hlimveci | ⊢ ( 𝐹  ⇝𝑣  (  ⇝𝑣  ‘ 𝐹 )  →  (  ⇝𝑣  ‘ 𝐹 )  ∈   ℋ ) | 
						
							| 80 |  | oveq1 | ⊢ ( 𝑥  =  (  ⇝𝑣  ‘ 𝐹 )  →  ( 𝑥  ·ih  𝐵 )  =  ( (  ⇝𝑣  ‘ 𝐹 )  ·ih  𝐵 ) ) | 
						
							| 81 |  | ovex | ⊢ ( (  ⇝𝑣  ‘ 𝐹 )  ·ih  𝐵 )  ∈  V | 
						
							| 82 | 80 48 81 | fvmpt | ⊢ ( (  ⇝𝑣  ‘ 𝐹 )  ∈   ℋ  →  ( ( 𝑥  ∈   ℋ  ↦  ( 𝑥  ·ih  𝐵 ) ) ‘ (  ⇝𝑣  ‘ 𝐹 ) )  =  ( (  ⇝𝑣  ‘ 𝐹 )  ·ih  𝐵 ) ) | 
						
							| 83 | 19 79 82 | 3syl | ⊢ ( 𝜑  →  ( ( 𝑥  ∈   ℋ  ↦  ( 𝑥  ·ih  𝐵 ) ) ‘ (  ⇝𝑣  ‘ 𝐹 ) )  =  ( (  ⇝𝑣  ‘ 𝐹 )  ·ih  𝐵 ) ) | 
						
							| 84 | 40 77 83 | 3brtr3d | ⊢ ( 𝜑  →  ( ℕ  ×  { 0 } ) ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) ( (  ⇝𝑣  ‘ 𝐹 )  ·ih  𝐵 ) ) | 
						
							| 85 | 5 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) | 
						
							| 86 | 85 | a1i | ⊢ ( 𝜑  →  ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) ) | 
						
							| 87 |  | 0cnd | ⊢ ( 𝜑  →  0  ∈  ℂ ) | 
						
							| 88 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 89 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 90 | 89 | lmconst | ⊢ ( ( ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ )  ∧  0  ∈  ℂ  ∧  1  ∈  ℤ )  →  ( ℕ  ×  { 0 } ) ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 0 ) | 
						
							| 91 | 86 87 88 90 | syl3anc | ⊢ ( 𝜑  →  ( ℕ  ×  { 0 } ) ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 0 ) | 
						
							| 92 | 7 84 91 | lmmo | ⊢ ( 𝜑  →  ( (  ⇝𝑣  ‘ 𝐹 )  ·ih  𝐵 )  =  0 ) |