Metamath Proof Explorer


Theorem occon

Description: Contraposition law for orthogonal complement. (Contributed by NM, 8-Aug-2000) (New usage is discouraged.)

Ref Expression
Assertion occon ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴𝐵 → ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 ssralv ( 𝐴𝐵 → ( ∀ 𝑦𝐵 ( 𝑥 ·ih 𝑦 ) = 0 → ∀ 𝑦𝐴 ( 𝑥 ·ih 𝑦 ) = 0 ) )
2 1 ralrimivw ( 𝐴𝐵 → ∀ 𝑥 ∈ ℋ ( ∀ 𝑦𝐵 ( 𝑥 ·ih 𝑦 ) = 0 → ∀ 𝑦𝐴 ( 𝑥 ·ih 𝑦 ) = 0 ) )
3 ss2rab ( { 𝑥 ∈ ℋ ∣ ∀ 𝑦𝐵 ( 𝑥 ·ih 𝑦 ) = 0 } ⊆ { 𝑥 ∈ ℋ ∣ ∀ 𝑦𝐴 ( 𝑥 ·ih 𝑦 ) = 0 } ↔ ∀ 𝑥 ∈ ℋ ( ∀ 𝑦𝐵 ( 𝑥 ·ih 𝑦 ) = 0 → ∀ 𝑦𝐴 ( 𝑥 ·ih 𝑦 ) = 0 ) )
4 2 3 sylibr ( 𝐴𝐵 → { 𝑥 ∈ ℋ ∣ ∀ 𝑦𝐵 ( 𝑥 ·ih 𝑦 ) = 0 } ⊆ { 𝑥 ∈ ℋ ∣ ∀ 𝑦𝐴 ( 𝑥 ·ih 𝑦 ) = 0 } )
5 4 adantl ( ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) ∧ 𝐴𝐵 ) → { 𝑥 ∈ ℋ ∣ ∀ 𝑦𝐵 ( 𝑥 ·ih 𝑦 ) = 0 } ⊆ { 𝑥 ∈ ℋ ∣ ∀ 𝑦𝐴 ( 𝑥 ·ih 𝑦 ) = 0 } )
6 ocval ( 𝐵 ⊆ ℋ → ( ⊥ ‘ 𝐵 ) = { 𝑥 ∈ ℋ ∣ ∀ 𝑦𝐵 ( 𝑥 ·ih 𝑦 ) = 0 } )
7 6 ad2antlr ( ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) ∧ 𝐴𝐵 ) → ( ⊥ ‘ 𝐵 ) = { 𝑥 ∈ ℋ ∣ ∀ 𝑦𝐵 ( 𝑥 ·ih 𝑦 ) = 0 } )
8 ocval ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) = { 𝑥 ∈ ℋ ∣ ∀ 𝑦𝐴 ( 𝑥 ·ih 𝑦 ) = 0 } )
9 8 ad2antrr ( ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) ∧ 𝐴𝐵 ) → ( ⊥ ‘ 𝐴 ) = { 𝑥 ∈ ℋ ∣ ∀ 𝑦𝐴 ( 𝑥 ·ih 𝑦 ) = 0 } )
10 5 7 9 3sstr4d ( ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) ∧ 𝐴𝐵 ) → ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) )
11 10 ex ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴𝐵 → ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ) )